

CEL extends the scale of the intrusion-hosted gold discovery at the Hualilan Gold Project

<u>Highlights</u>

- Assays for the bottom half of discovery drill hole GNDD-025 increase the scale of the new intrusion-hosted gold discovery
- Extends the mineralisation to the bottom of the hole with the last 2 metres of the hole returning 1.0 g/t gold
- GNDD-025 returned a complete intercept of (refer Table 1):
 - 88 metres at 0.94 g/t gold, 2.2 g/t silver, 0.10% zinc (ending in mineralisation)
 - including 37 metres (surface oxidised) at 1.8 g/t gold, 4.2 g/t silver from 53 metres
- CEL's 1 kilometre intrusion-hosted discovery is now defined by intersections of 116 metres at 1.2 g/t AuEq and 88 metres at 1.0 g/t AuEq at either end of this undrilled target
- Major synergies from an exploration and mine development perspective with the porphyry hosted gold contiguous to, and underlying, the existing high-grade mineralisation

Challenger Exploration (ASX: CEL) (CEL or the **Company)** is pleased to announce that assays for the bottom half of the discovery drill hole GNDD-025 have extended the scale of the discovery of a new style of intrusion-hosted gold mineralisation at the Company's Hualilan Gold Project.

Drill hole GNDD-025 has returned a complete intersection of **88 metres at 0.94 g/t gold, 2.2 g/t silver, 0.1% zinc** from 53 metres to the end of the hole in dacite porphyry containing iron oxide, silica, and pyrite alteration (*previously 50 metres at 1.4 g/t gold, 3.4 g/t to 103 metres*). Importantly, mineralisation remains strong and open at depth, with the final two metres of the hole grading **1.0 g/t gold and 0.5 g/t silver**. The top of the intercept includes a higher-grade zone of **37 metres at 1.8 g/t gold, 4.2 g/t silver** down to the base of oxidation which occurs at 90 metres downhole, which is potentially related to supergene enrichment.

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"Assays from the bottom half of drill hole GNDD-025, which was our discovery hole into the porphyry mineralisation, has extended the mineralisation to the bottom of the hole. The hole returned a complete intercept of 88 metres at 0.94 g/t gold, 2.2 g/t silver and ended in 1.0 g/t gold mineralisation.

This builds on our gold in porphyry target which covers 1 kilometre of strike in the Gap Zone between Cerro Norte and Cerro Sur, and is defined by intersections of 116 metres at 1.2 g/t AuEq and 88 metres at 1.0 g/t AuEq at either end.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Intrusion-hosted Gold Discovery and Conceptual Target

GNDD-025 is located in the Gap Zone between Cerro Norte and Cerro Sur, an area with limited historical drilling, some 300 metres along strike from any prior CEL drilling. The mineralisation in GNDD-025 is a new type of intrusion-hosted mineralisation in dacite porphyry. The historical high-grade mineralisation at Hualilan occurs in faults and as limestone replacement bodies.

The high-grade skarn target remains a priority for the project. Drill hole GNDD-032 recently extended the high-grade mineralisation 100 metres further south of Cerro Norte into the Gap Zone with an intersection of 5.75 metres at 9.5 g/t gold, 29 g/t silver, 3.5 % zinc. This high-grade skarn has also been mapped in outcrop in the southern 500 metres of the Gap Zone at Pizzaro and Puntilla, an area yet to be tested by drilling.

The new style of intrusion-hosted gold mineralisation, however, has scale which cannot be ignored. The Company has defined a near surface conceptual intrusion-hosted target covering 1 kilometre of strike and up to 100 metres wide (Figure 1) which remains in both directions along strike and at depth. This is defined by the limited historical drilling, mapping of the surface exposure of the altered dacite porphyry, and recent CEL drill holes. This intrusion-hosted discovery is now defined by intersections of **116 metres at 1.2 g/t AuEq** (GNDD-032) and **88 metres at 1.0 g/t AuEq** (GNDD-025) at either end of this undrilled target. Being near surface and overlain by recent unconsolidated alluvial gravel further enhance the attraction of this porphyry target.

Both the traditional high-grade skarn and this new intrusion-hosted bulk gold mineralisation can be jointly explored for minimal additional expense as the porphyry hosted gold is contiguous to, and underlies, the existing high-grade mineralisation.

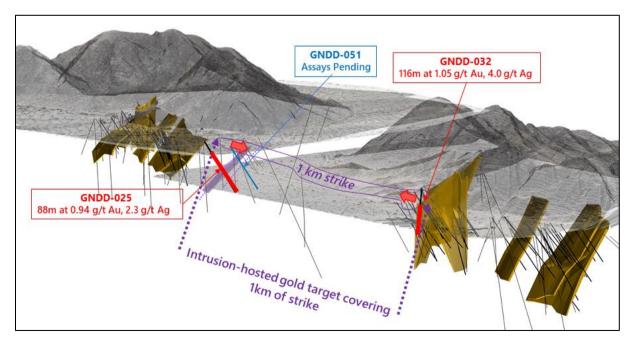


Figure 1 - Showing conceptual intrusion-hosted gold target bridging the Gap Zone with the location of GNDD-025 and other drill holes that have intercepted altered dacite with assays pending

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

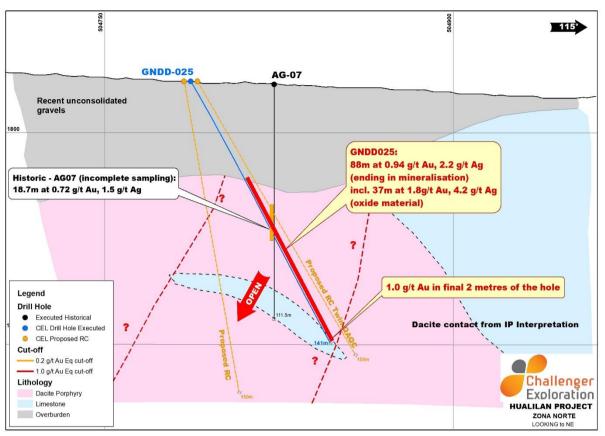


Figure 2 - Cross section showing GNDD-025 and GNDD-051

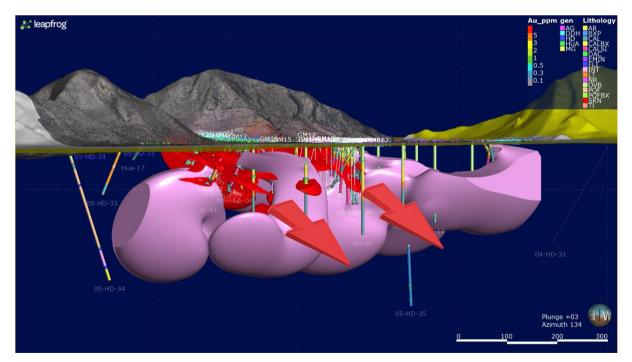


Figure 3 - Distribution of the high-grade skarn mineralisation and adjacent porphyry at Cerro Norte. (Note the close proximity of the porphyry dacite to the high-grade skarn mineralisation and that the skarn mineralisation remains open down plunge)

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	AuEq (g/t)	Note
GNDD025	53.0	88.0*	0.94	2.3	0.08	0.10	1.0	0.2 g/t AuEq cut
including	53.0	37.0	1.8	4.2	0.16	0.21	2.0	0.2 g/t AuEq cut in oxide
including	61.0	14.0	3.1	5.3	0.11	0.19	3.3	1.0 g/t AuEq cut
including	79.0	11.0	1.3	4.1	0.25	0.16	1.5	1.0 g/t AuEq cut
including	93.0	1.0	1.1	2.5	0.37	0.09	1.3	1.0 g/t AuEq cut
including	113.0	2.0	1.2	4.4	0.01	0.02	1.2	1.0 g/t AuEq cut
including	139.0	2.0*	1.00	0.5	0.00	0.01	1.0	1.0 g/t AuEq cut

Table 1 - Assay results GNDD-025

(1) Intercepts calculated using a using a 0.2 g/t AuEq cut-off and 1.0 g/t AuEq cut-off as Indicated

(2) * ended in mineralisation

(2) Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Commodity prices for the calculation of AuEq is Au US\$1450 oz, Ag US\$16 oz, and Zn US\$2,200/t
- Metallurgical recoveries for Au, Ag and Zn are assumed to be the same (see JORC Table 1 Section 3)
- AuEq (g/t) = Au (g/t) + Ag (g/t) x (16/1450) + Zn (%) x 2.12
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold

This announcement was approved by the board.

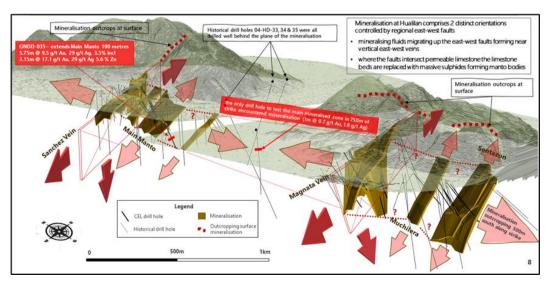
For further information contact:

Kris Knauer	S
Managing Director	C
+61 411 885 979	+
kris.knauer@challengerex.com	S

Scott Funston Chief Financial Officer +61 413 867 600 scott.funston@challengerex.com

Previous announcements referred to in this release include:

8 July 2020 - CEL MAKES NEW GOLD DISCOVERY AT ITS HUALILAN PROJECT WHICH IS EXPECTED TO SUBSTANTIALLY INCREASE SCALE 27 July 2020 - CEL BUILDS ON NEW GOLD DISCOVERY AT HUALILAN WITH A SECOND SIGNIFICANT INTERSECTION 1KM ALONG STRIKE 29 July 2020 - CEL B EXTENDS HIGH-GRADE GOLD MINERALISATION AT HUALILAN 100 METRES ALONG STRIKE


Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽²⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included ^(A) 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. CEL's 2020 program will include 7,500 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource which will allow an economic review.
- 2. El Guayabo Gold/Copper Project covers 35 km² in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections of plus 100m of intrusion related breccia and vein hosted mineralisation. The Project has multiple targets including breccia hosted mineralization, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134 metres at 1.0 g/t gold and 4.1 g/t silver including 63 metres at 1.6 g/t gold and 5.1 g/t silver.

Hualilan Project - 3D View of the High Grade Skarn Mineralisation

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

La Mancha Resources 2003 foreig	La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)								
Measured	218	14.2	100								
Indicated	226	14.6	106								
Total of Measured & Indicated	445	14.4	206								
Inferred	977	13.4	421								
Total of Measured, Indicated & Inferred	1,421	13.7	627								

Foreign Resource Estimate Hualilan Project

^A Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The Company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates that materially impacts on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The Company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed

Competent Person Statement – Exploration results

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary						
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.						
	 handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample 	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.						
	representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.						
	 Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg 	Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.						
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, N Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration.						
		Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.						
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.						
		Hole_id Type East North Elevation Azimuth Dip Depth Date (m) (m ASL) (°) (°) (m)						

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)		Depth (m)	Date
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-9
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
				2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
		MG12	RC							
		MG12	RC	2303270.3						
		MG12 Hole_id	Туре	East	North	Elevation	Azimuth (°)	Dip (*)	-	Dat
		Hole_id	Туре	East (m)	North (m)	(m ASL)	(°)	(°)	(m)	
				East	North			-	(m) 60.0	Dat 199

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ary							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	-	Depth (m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD DD	2504762.9 2504920.4	6601587.1 6601994.3	1769.8 1767.9	116 000	-65 -90	66.0 58.8	1999-00
		DDH23 DDH24		2504920.4 2504821.0	6601994.3 6601938.8	1767.9 1802.0			58.8 100.3	1999-00 1999-00
		DDH23 DDH24 DDH25	DD DD DD	2504920.4 2504821.0 2504862.6	6601994.3 6601938.8 6601964.5	1767.9 1802.0 1803.7	000 116 116	-90 -80 -74	58.8 100.3 49.2	1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26	DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4	6601994.3 6601938.8 6601964.5 6601975.3	1767.9 1802.0 1803.7 1795.0	000 116 116 312	-90 -80 -74 -60	58.8 100.3 49.2 80.3	1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27	DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1	1767.9 1802.0 1803.7 1795.0 1806.6	000 116 116 312 116	-90 -80 -74 -60 -60	58.8 100.3 49.2 80.3 43.2	1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28	DD DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6	000 116 116 312 116 116	-90 -80 -74 -60 -60 -50	58.8 100.3 49.2 80.3 43.2 41.7	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0	000 116 116 312 116 116 350	-90 -80 -74 -60 -60 -50 -52	58.8 100.3 49.2 80.3 43.2 41.7 113.5	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30	DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3	000 116 116 312 116 116 350 059	-90 -80 -74 -60 -60 -50 -52 -85	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31	DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2505004.1	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1	000 116 116 312 116 116 350 059 116	-90 -80 -74 -60 -60 -50 -52 -85 -75	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32	DD DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	000 116 116 312 116 116 350 059 116 350	-90 -80 -74 -60 -50 -52 -85 -75 -51	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH33	DD DD DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	000 116 116 312 116 116 350 059 116 350 350	-90 -80 -74 -60 -50 -52 -85 -75 -51 -65	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH33 DDH33	DD DD DD DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3	000 116 116 312 116 350 059 116 350 350 116	-90 -80 -74 -60 -50 -52 -85 -75 -51 -65 -70	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH31 DDH32 DDH33 DDH34 DDH35	DD DD DD DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504826.5 2505003.9	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2 6601920.2 6602156.7	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3 1808.8	000 116 116 312 116 350 059 116 350 350 116 310	-90 -80 -74 -60 -50 -52 -85 -75 -51 -65 -70 -85	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4 174.6	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32 DDH33 DDH33	DD DD DD DD DD DD DD DD DD DD DD DD	2504920.4 2504821.0 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3	000 116 116 312 116 350 059 116 350 350 116	-90 -80 -74 -60 -50 -52 -85 -75 -51 -65 -70	58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ary							
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ry						
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7 1999-0
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 1999-0
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 1999-0
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 1999-0
		Hole_id	Тур	East	North	Elevation	Azimuth	Dip	Depth
			е	(m)	(m)	(m ASL)	(°)	(°)	(m)
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	66000428.0	1764.5	100	-45	265.0
		04HD20	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD30	DD	2504421.0	6601326.0	1794.0	045	-40	242.9
		04HD31 04HD32	DD	2504087.0	6601916.0	1801.3	116	-70	68.4
		0411032	00	2304020.0	0001910.0	1001.5	110	-70	00.4

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation	Commentary								
	05HD33	DD	2505410.0	6601983.0	1765.0	000	-60		31.4
	05HD34	DD	2505451.0	6602079.0	1763.0	273	-60		59.0
	05HD35	DD	2504905.0	6601689.0	1794.0	140	-65		0.0
	05HD36	DD	2504880.0	6601860.0	1802.0	295	-70		80.0
	05HD37	DD	2504866.0	6601888.0	1797.0	295	-70		80.0
	05HD38	DD	2504838.0	6601937.0	1796.0	115	-70		0.0
	05HD39	DD	2504964.0	6602128.0	1814.0	030	-70		.7.5
	05HD40	DD	2504964.0	6602128.0	1814.0	030	-50		0.0
	05HD41	DD	2504931.0	6602125.0	1812.0	022	-60		2.5
	05HD42	DD	2504552.7	6600791.5	1797.0	194	-57		20.0
	05HD43	DD	2504552.7	6600791.5	1797.0	194	-45		95.5
	05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.		80.5
	05HD45	DD	2504362.0	6600710.0	1767.0	088	-60		1.5
	05HD46	DD	2504405.0	6600282.0	1766.0	090	-75		80.7
	05HD47	DD	2504212.0	6599177.0	1729.0	065	-45		31.5
	05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	10	0.7
	CEL drilling of	f HO3 co		was done using	g a LM90 tru			achine th	at is operated
	by Foraco Arg Drilling (Men CEL drilling o drill rig set up	gentina doza). 1 f reverse p for rev	ore (triple tube) S.A. (Mendoza) The core has no e circulation (R erse circulatior	was done using and a trailer m t been oriented C) drill holes is b drilling. Drillin C drill holes co	ounted Hydr eing done u g is being do	ck moun ocore dr sing a tra one using	ted drill m ill machine ack-mount a 5.25 inc	e operated ed LM650 h hamme	d by Energold universal r bit.
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulatior drill holes and f cations for drill	and a trailer m t been oriented C) drill holes is b	ounted Hydr eing done u g is being do mpleted by (10 are surve	ck moun ocore dr sing a tra one using CEL are s eyed usir	ted drill m ill machine ack-mount a 5.25 inc hown belo g DGPS. C	e operated ed LM650 h hamme w in WGS ollar locat	d by Energold universal r bit. 84, zone 19s ion for holes
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulatior drill holes and f cations for drill	and a trailer m t been oriented C) drill holes is b drilling. Drillin RC drill holes co holes to GNDDC	ounted Hydr eing done u g is being do mpleted by (10 are surve	ck moun rocore dr sing a tra ne using CEL are s eyed usir ed up wit tion	ted drill m ill machine ack-mount a 5.25 inc hown belo g DGPS. C h DGPS in	e operated ed LM650 h hamme w in WGS ollar locat	d by Energold universal r bit. 84, zone 19s ion for holes
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C from GNDD0	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulation drill holes and for cations for drill urveyed with a	and a trailer m t been oriented C) drill holes is b drilling. Drillin RC drill holes co holes to GNDDC handheld GPS t	eing done u g is being do mpleted by (10 are surve o be followe Eleva (m	ck moun rocore dr sing a tra ne using CEL are s eyed usir ed up wit tion	ted drill m ill machine a 5.25 inc hown belo g DGPS. C h DGPS in Dip A :	e operated ed LM650 h hamme w in WGS ollar locat the near f zimuth	d by Energold universal r bit. 84, zone 19s ion for holes uture. Depth
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C from GNDDO Hole_id	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulatior drill holes and for cations for drill urveyed with a East (m)	and a trailer m t been oriented C) drill holes is b d drilling. Drillin RC drill holes co holes to GNDDO handheld GPS t North (m)	eing done u g is being do mpleted by (10 are surve o be followe Eleva (m 57 182	ck moun ocore dr sing a tra ne using CEL are s eyed usir ed up wit tion)	ted drill m ill machine a 5.25 inc hown belo g DGPS. C h DGPS in Dip A : (°)	e operated ed LM650 h hamme w in WGS ollar locat the near f zimuth (°)	d by Energold universal r bit. 84, zone 19s ion for holes future. Depth (m)
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C from GNDD0 Hole_id GNDD001	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulatior drill holes and f cations for drill urveyed with a East (m) 504803.987	and a trailer m t been oriented C) drill holes is b a drilling. Drillin RC drill holes co holes to GNDDO handheld GPS t North (m) 6601337.00	eing done u g is being do mpleted by (10 are surve o be followe Elevan (m 57 1829 55 1829	ck moun rocore dr sing a tra ne using CEL are s eyed usir ed up wit tion) 9.289	ted drill m ill machine ack-mount a 5.25 inc hown belo g DGPS. C h DGPS in Dip A : (°)	ed LM650 h hamme w in WGS ollar locat the near f zimuth (°) 115	d by Energold universal r bit. 84, zone 19s ion for holes future. Depth (m) 109.0
	by Foraco Arg Drilling (Men CEL drilling of drill rig set up Collar details projection. C from GNDD0 Hole_id GNDD001 GNDD002	gentina doza). T f reverse o for rev for DD Collar loc	ore (triple tube) S.A. (Mendoza) The core has no e circulation (Re erse circulation drill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for trill holes and for tr	and a trailer m t been oriented C) drill holes is b d drilling. Drillin RC drill holes co holes to GNDDC handheld GPS t North (m) 6601337.00 6601312.09	eing done u g is being do mpleted by (10 are surve o be followe Eleva (m 57 1829 95 1829	ck moun rocore dr sing a tra ne using CEL are s eyed usir ed up wit tion) 9.289 9.393	ted drill m ill machine a 5.25 inc hown belo g DGPS. C h DGPS in Dip A: (°) -57 -60	e operated ed LM650 h hamme w in WGS ollar locat the near f zimuth (°) 115 115	d by Energold universal r bit. 84, zone 19s ion for holes iuture. Depth (m) 109.0 25.6

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

GNDD004

GNDD005

Contact T: +61 8 6380 9235 E: admin@challengerex.com

504994.416

504473.042

6601546.302

6600105.922

1835.345

1806.448

-60

-55

115

090

100.0

110.0

Criteria	JORC Code explanation	Commentary						
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504393	6599645	1795	-64	115	169.2
		GNDD012	504453	6599821	1799	-55	115	120.0
		GNDD013	504404	6599614	1793	-58	112	141.0
		GNDD014	504405	6599661	1795	-59	114	140.0
		GNDD015	504440	6600155	1809	-62	115	166.7
		GNDD016	504402	6599684	1795	-60	115	172.0
		GNDD017	504460	6600077	1806	-55	115	132.6
		GNDD018	504473	6600112	1806	-60	115	130.0
		GNDD019	504936	6601533	1834	-70	115	80.0
		GNDD020	504462	6600141	1809	-58	115	153.0
		GNDD021	504937	6601565	1838	-60	115	120.0
		GNDD022	504836	6601329	1830	-60	113	100.0
		GNDD023	504815	6601333	1830	-55	117	100.0
		GNDD024	504460	6600125	1808	-70	115	150.0
		GNDD025	504786	6601137	1825	-60	115	141.0
		GNDD026	504815	6601440	1834	-55	115	100.0
		GNDD028	504827	6601319	1829	-57	115	100.0
		GNDD029	504792	6601314	1829	-71	115	120.2
		GNDD030	504792	6601314	1829	-60	115	148.0
		GNDD031	504454	6599860	1794	-60	130	149.0
		GNDD032	504624	6600197	1822	-55	097	166.6
		GNDD033	504624	6600197	1822	-55	115	62.0

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD034	504834	6601384	1830	-60	115	60.0
		GNDD035	504866	6601523	1837	-78	115	119.5
		GNDD036	504781	6601230	1829	-55	115	131.0
		GNDD037	504305	6599130	1777	-55	115	83.5
		GNDD038	504465	6599833	1796	-55	115	87.7
		GMDD039	504468	6600096	1806	-70	115	80.0
		GMDD040	504816	6601315	1829	-55	115	135.5
		GMDD041	504402	6599642	1795	-55	095	95.0
		GNDD042	504471	6600104	1806	-60	115	140.0
		GMDD043	504391	6599576	1791	-67	115	80.0
		GNDD044	504816	6601318	1829	-65	115	185.0
		GNDD045	504380	6599623	1793	-57	115	242.0
		GNDD046	504362	6599704	1795	-60	115	191.0
		GNDD047	504454	6599640	1792	-60	115	101.0
		GNDD048	504786	6601272	1828	-74	115	95.0
		GNDD049	504809	6601416	1834	-60	115	90.0
		GNDD050	504822	6601512	1836	-60	115	80.0
		GNDD051	504767	6601034	1822	-60	115	120.0
		GNRC052	504444	6599556	1790	-60	115	90
		GNRC053	504454	6599595	1791	-60	115	96
		GNRC054	504463	6599679	1793	-60	115	90
		GNRC055	504463	6599724	1796	-60	115	102
		GNRC056	504466	6599766	1796	-60	115	102
		GNRC057	504463	6599916	1801	-60	115	96
		GNRC058	504718	6600487	1822	-60	115	102
		GNRD059	504782	6600722	1811	-60	115	84
		GNRD061	504965	6601520	1838	-60	115	30
		GNRD062	504943	6601530	1835	-60	115	30
		GNRC063	504917	6601503	1836	-60	115	36

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNRC064	504893	6601470	1835	-60	115	36
		GNRC065	504862	6601479	1833	-60	115	60
		GNRC066	504892	6601505	1837	-60	115	48
		GNRC067	504909	6601546	1834	-60	115	50
		GNRC068	504987	6601555	1835	-60	030	114
		GNRC069	504933	6601579	1836	-60	115	120
		GNRC070	504925	6601564	1838	-60	350	84
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 		into wooden boxes b n. These depths are i					
	 Measures taken to maximise sample recovery and ensur representative nature of the samples. 	<i>e</i> Triple tube drilling	has been being done	by CEL to maximis	e core recove	ery.		
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	kg sub-samples is c every 25-30 sample	e collected from a rot ollected for each me es using a riffle splitte e sample recovery a	tre of RC drilling. D er to split out a 2-4	ouplicate sam kg sub-samp	nples are ta	aken at the ra	ate of I
		whereby low recov available to more a fracturing in the ro	ship has been observ eries have resulted in ccurately quantify th ck. A positive correla Illy post mineral and	n underreporting of is. Core recovery is ation between reco	f grade. Insul s influenced very and RQ	fficient info by the inte D has beer	ormation is n ensity of natu n observed.	ot yet ral
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	core photographs f	vailable for most of t rom the historic drill t. No RC sample chip	ing have been foun	d. No drill co			
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to a level work. RC drill chips quantitative. Geolo	the core is logged for that is suitable for g s are logged for geolo ogical logging is done lds all drilling logging	eological modelling ogy, alteration and in MS Excel in a fo	resource es mineralisatic rmat that ca	timation a on. Where	nd metallurg possible logg	ical test ging is
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc 	split using a wide b	re is cut longitudinall lade chisel. The geol o ensure half-core sa	ogist logging the co	ore indicates			
	and whether sampled wet or dry. - For all sample types the nature quality and		e selected based on .6m. No second-half					

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	 appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of 	 samples has been retained in the core trays for future reference. RC sub-samples are collected at the drill site. A duplicate RC sample is collected for every 25-30m drilled. CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project. Sample sizes are appropriate for the mineralisation style and grain size of the deposit.
Quality of assay data and laboratory tests	 the material being sampled. The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the 	The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.
	 analysis including instrument make and model reading times calibrations factors applied and their derivation etc. Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Internal laboratory standards were used for each job to ensure correct calibration of elements. CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. 21 blanks have been received from MSA laboratory and 18 blanks have been received from ALS laboratory. The values received from the blank samples suggest no significant contamination of the samples during sample preparation.
		For GNDD001 – GNDD010 three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada. 22 reference samples were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.
		For drill holes from GNDD011 onwards three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the ALS Laboratory in Canada. In the results received to date 30 CRM standards have been received from ALS Laboratory. In all cased the values returned have been within +/- 2SD of the mean value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary								
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data data entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Repeat sampling of 186 coarse Original samples were from the Vancouver analysis). Repeat sa analysis). The repeat analysis to closely with the original analyse MSA and ALS. A summary of th	2019 DD mples we echnique es providii	drilling w re analyse was ident ng a high o	hich were ed by ALS ical to the confidence	analysed (Mendoz original. e in the s	d by MSA (S a preparat The repea ample prep	San Juan p ion and Va at analyses paration a	reparation and ancouver s correlate very nd analysis fror	
			Mean		Median		Std Devia	ation		
		Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient	
		Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972	
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903	
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997	
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994	
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997	
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987	
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988	
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983	
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994	
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954	
		Cd values >1000 are set at 1000. REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero CEL have sought to twin some of the historic drill holes to check the results of previous exploration. Ar analysis of the twin holes has yet to be completed. Final analyses are received by digital file in PDF and CSV format. The original files are backed-up and th data copied into a drill hole database for geological modelling. Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted.								
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. 	Following completion of drilling Argentinian SGM survey. The lo			-		-	-		

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	- Specification of the grid system used.	WGS84 UTM zone 19s.
	- Quality and adequacy of topographic control.	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.
		Drill holes are surveyed at 30-40m intervals down hole using a Reflex tool.
		All current and previous drill collar sites Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation.
structure	 this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary									
Mineral tenement and land tenure status	 Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings. 	The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to Definitive Feasibility Study (DFS). Granted mining leases (Minas Otorgadas) at the Hualilan Project									
	- The security of the tenure held at the time of	Name	Number	Current Owner	Status	Grant Date	Area (ha)				
	reporting along with any known impediments to obtaining a licence to operate in the area.	Cerro Sur									
		Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6				
		Cerro Norte									
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6				
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6				

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

	JORC Code explanation		Commentary									
			Pique de Ortega	5448-M-1960	CIA GPL	S.R.L.	Granted	30/04/2015	6			
			Descrubidora	5448-M-1960	CIA GPL	S.R.L.	Granted	30/04/2015	6			
			Pardo	5448-M-1960	CIA GPL	S.R.L.	Granted	30/04/2015	6			
			Sanchez	5448-M-1960	CIA GPL	S.R.L.	Granted	30/04/2015	6			
			Andacollo	5448-M-1960	CIA GPL	S.R.L.	Granted	30/04/2015	6			
			Mining Lease exten	sions (Demasias)	at the Hualil	an Project			_			
			Name	Number	Curre	nt Owner	Status	Grant date	Area (ha)			
			Cerro Sur									
			North of "Pizarro" Mine	195-152-C-198	1 Golden I S.R.L.	Vining	Granted	05/12/2014	1.9			
			Cerro Norte									
			South of "La Toro" Mine 195-152-C-1981 CIA GPL S.R.L.		S.R.L.	Granted 05/12/201		1.9				
			Additional to the M 15 Minas has been Exploration licence	accepted by the S	San Juan Dep	artment of Min	es and is cu	rrently being pro				
			15 Minas has been	accepted by the S	San Juan Dep	artment of Min	es and is cu sias at the F	rrently being pro				
			15 Minas has been Exploration licence Name	accepted by the s application surro	San Juan Dep unding the N	artment of Min	es and is cu sias at the F Exp	rrently being pro Hualilan Project	ocessed.			
			15 Minas has been Exploration licence Name	accepted by the s application surro Number 30.591.654	San Juan Dep unding the M Status Pending	artment of Min <i>linas and Dema</i> Grant Date -	es and is cu sias at the F Exp 5 year	rrently being pro Hualilan Project iry Date application	Area (ha)			
Exploration done b other parties	9 y - Acknowledgment and a other parties.	ppraisal of exploration by	15 Minas has been Exploration licence Name Josefina	accepted by the s application surro Number 30.591.654 impediments to o ing dating back ov naps reports tren plus property exa	San Juan Dep unding the N Status Pending Dobtaining the ver 500 years ching data u aminations a	artment of Min finas and Dema Grant Date - e exploration lice thas produced a nderground wo nd detailed stud	es and is cu sias at the F Exp 5 year ense or oper a great deal rkings drill h	rrently being pro Hualilan Project iry Date application rating the Project of information a nole results geop	Area (ha) 2570 t. nd data includ			
•	,	ppraisal of exploration by	15 Minas has been Exploration licence Name Josefina 3 There are no know Intermittent sampli sampling geologic no resource estimates	accepted by the s application surro Number 30.591.654 impediments to a ing dating back on maps reports tren plus property exis k has been compl	San Juan Dep unding the M Status Pending obtaining the ver 500 years ching data u aminations a eted since 20	Grant Date	es and is cu sias at the F Exp 5 year ense or oper a great deal rkings drill h dies by seve	rrently being pro Hualilan Project iry Date application rating the Projec of information a hole results geop ral geologists. Pr	Area (ha) 2570 t. nd data incluc hysical survey rior to the curr			

Criteria J	ORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totaling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48)
		 Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology -	Deposit type geological setting and style of mineralisation.	Mineralisation occurs in all rock types but it preferentially replaces limestone shale and sandstone and occurs in fault zones.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz- galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form in tellurides (hessite) and as inclusions with pyrite and chalcopyrite. The mineralisation also commonly contains chalcopyrite sphalerite and galena.
		Mineralisation is either parallel to bedding in bedding-parallel faults or in east-west striking steeply dipping siliceous quartz-dominated veins that cross the bedding at a high angle. The veins have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information -	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has been allowed. No metallurcial or recovery factors have been used. Drill collar location is provided in the

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
	 easting and northing of the drill hole collar 	previous section.					
	- elevation or RL (Reduced Level – elevation above sea	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
	level in metres) of the drill hole collar	AG16	38.6	1.2	0.1	28.6	1.7
	- dip and azimuth of the hole	MG10	108.0	3.0	1.3	No assay	No assay
	- down hole length and interception depth	DDH36	24.7	9.3	1.6	46.3	1.2
	- hole length.	DDH53	17.3	1.4	1.0	1.7	0.00
	 If the exclusion of this information is justified on the 	DDH53	24.0	8.9	3.7	239.5	0.03
	basis that the information is not Material and this	DDH53	35.7	3.9	3.9	87.8	0.06
	exclusion does not detract from the understanding of	DDH53	41.0	3.0	2.6	7.6	0.20
	the report the Competent Person should clearly	DDH54	20.0	1.1	1.2	0.7	0.00
	explain why this is the case.	DDH54	31.1	8.3	3.9	32.1	0.80
		DDH65	62.0	8.2	11.0	60.6	1.2
		DDH65	82.0	1.0	1.8	33.4	0.30
		DDH66	83.1	7.2	23.7	42.9	2.4
		DDH66	87.9	2.4	69.9	114.4	2.2
		DDH66	104.9	2.8	1.8	29.0	0.10
		DDH67	98.7	1.3	0.2	7.8	1.3
		DDH68	4.0	17.9	2.2	6.3	0.20
		DDH68	73.7	0.5	0.8	9.0	1.2
		DDH69	4.0	16.1	2.3	1.6	0.10
		DDH69	76.9	0.3	0.1	7.0	28.0
		DDH69	79.7	0.8	1.3	120.0	4.5
		DDH70	84.0	7.0	5.2	13.5	0.70
		DDH71	11.0	2.0	0.5	218.0	0.06
		DDH71	39.9	1.0	1.3	6.0	0.03
		DDH71	45.5	1.1	0.4	22.8	0.60
		DDH71	104.0	10.0	33.5	126.7	7.9
		DDH72	26.0	11.7	3.8	14.1	1.3
		DDH72	52.7	6.3	1.5	30.4	0.04
		DDH73	62.5	3.5	0.5	15.6	0.60
		DDH74	119.9	0.5	7.3	98.5	2.6
		DDH76	61.3	0.7	4.0	11.1	0.50
		DDH76	74.4	4.0	0.8	8.8	0.30
		DDH76	84.8	1.2	1.4	10.9	2.0
		DDH78	109.1	0.7	1.1	13.4	1.9
		03HD01A	90.1	1.7	2.1	37.4	2.4
		03HD03	55.0	2.4	2.5	25.6	2.3

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	
		05HD42	115.0	3.0	29.0	103.1	0.20	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

For GNDD001 – GNDD010 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	Au eq (g/t)	-
GNDD001	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	1.00	31.00	1.0	2.4	0.89	1.4	
GNDD002A	1.00	35.00	1.4	2.8	0.75	1.8	
GNDD002A	0.60	81.50	2.8	27	28.1	16.4	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	8.47	6.03	2.0	7.8	0.68	2.4	
GNDD004	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	3.00	29.00	0.7	14	2.5	2.0	
GNDD005	1.00	43.00	0.4	10	1.4	1.1	
GNDD005	5.00	59.00	10.9	101	1.5	12.7	
inc	3.00	61.00	16.5	135	1.6	18.8	(1)
GNDD005	3.00	77.00	1.7	39	0.43	2.3	
GNDD005	1.00	83.00	1.2	156	0.72	3.2	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
GNDD006	1.45	90.00	2.1	41	0.92	3.0	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
GNDD007A	1.80	46.00	2.4	3.1	0.12	2.5	
GNDD007A	0.70	60.30	0.8	25	0.21	1.1	
GNDD007A	6.70	149.00	14.3	140	7.3	19.3	
inc	3.06	150.60	27.5	260	12.9	36.5	(1)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code explanation	Commentary									
	GNDD007A	0.6	60 176.40) 1	9	6.7	0.99	2	.4	
	GNDD008	35.5				8.1	0.10	0.4		ł
	GNDD008	1.1			2	16	0.56		7	
	GNDD008	1.0				557	1.2	55	(1)	ł
	GNDD008	2.7			.7	173	0.89	10	(1)	ł
	GNDD008	1.0			.9	43	0.52	1	6	
	GNDD008A	2.6				218	0.68	25	.5 (1)	1
	GNDD008A	10.0	00 105.00	0 0	.6	28.2	0.71	1	2	
	GNDD009	3.0	00 100.00	0.8	85	50	0.02	1	4	
	GNDD009	10.3	32 109.10) 10	.4	28	4.6	12	.9	
	inc	4.2	22 115.20) 21	9	58	8.7	26	.7 (1))
	GNDD010	27.3	30 24.35	5 0.2	28	8.4	0.08	0.4		
	GNDD010	2.0	00 30.00	0.9	91	37	0.14	1	4	
	GNDD010	1.0	00 34.00	0.9	92	7.6	0.09	1	0	
	GNDD010	1.3	30 55.00) 1	1	30	0.80	1	8	
	GNDD010	3.0	00 139.00) 17	.7	143	2.5	20	0.5 (1))
		off of 10 g/t Au e off of 0.2 g/t Au								
	_Hole_id	interval (m)	From (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	AuEq (g/t)	
	Hole_id GNDD011	interval (m) 1.00	From (m) 81.00	Au (g/t) 1.9	Ag (g/t) 43	Cu (%) 0.01	Pb (%) 0.06	Zn (%) 0.13		
									(g/t)	7
	GNDD011	1.00	81.00	1.9	43	0.01	0.06	0.13	(g/t) 2.4	7
	GNDD011 GNDD011	1.00 4.80	81.00 139.80	1.9 1.4	43 5.7	0.01 0.02	0.06 0.02	0.13 2.6	(g/t) 2.4 2.7	, ; (1
	GNDD011 GNDD011 GNDD011	1.00 4.80 0.70	81.00 139.80 147.20	1.9 1.4 9.4	43 5.7 13	0.01 0.02 0.07	0.06 0.02 0.00	0.13 2.6 6.6	(g/t) 2.4 2.7 12.6	, ; (1
	GNDD011 GNDD011 GNDD011 GNDD011	1.00 4.80 0.70 0.50	81.00 139.80 147.20 151.40	1.9 1.4 9.4 1.2	43 5.7 13 5.5	0.01 0.02 0.07 0.00	0.06 0.02 0.00 0.00	0.13 2.6 6.6 0.25	(g/t) 2.4 2.7 12.6 1.4	, 5 (1 1 5
	GNDD011 GNDD011 GNDD011 GNDD011 GNDD012	1.00 4.80 0.70 0.50 1.00	81.00 139.80 147.20 151.40 40.70	1.9 1.4 9.4 1.2 6.3	43 5.7 13 5.5 290	0.01 0.02 0.07 0.00 0.18	0.06 0.02 0.00 0.00 1.2	0.13 2.6 6.6 0.25 0.12	(g/t) 2.4 2.7 12.6 1.4 9.6	7 5 (1 1 5
	GNDD011 GNDD011 GNDD011 GNDD011 GNDD012 GNDD013	1.00 4.80 0.70 0.50 1.00 6.93	81.00 139.80 147.20 151.40 40.70 116.40	1.9 1.4 9.4 1.2 6.3 1.3	43 5.7 13 5.5 290 12	0.01 0.02 0.07 0.00 0.18 0.05	0.06 0.02 0.00 0.00 1.2 0.18	0.13 2.6 6.6 0.25 0.12 2.7	(g/t) 2.4 2.7 12.6 1.4 9.6 2.7	7 5 (1) 5 7

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD015	1.90	156.00	1.0	31	0.02	0.79	2.8	2.7	
		GNDD016	1.00	64.00	0.80	27	0.02	0.06	0	1.1	
		GNDD016	5.00	109.50	1.8	27	0.16	0.01	8.3	6.0	
		GNDD016	4.45	116.55	6.0	83	0.13	0.02	3.9	8.8	
		GNDD018	0.85	37.75	1.1	3.6	0.01	0.05	0.1	1.1	
		GNDD018	3.75	63.20	7.1	78	0.28	3.6	3.6	9.6	
		inc	2.55	64.40	10.3	114	0.41	5.2	4.9	13.9	(1)
		GNDD020	8.25	71.25	17.7	257	0.60	0.68	0.30	20.7	
		inc	5.50	74.00	26.0	355	0.05	0.21	0.42	30.1	(1)
		GNDD020 GNDD025	0.65 88.00	83.30 53.00	0.03 0.94	2.7 2.3	0.00 0.00	0.02 0.08	10.7 0.10	5.1 1.0	(2)
		inc	14.00	61.00	3.1	5.3	0.01	0.11	0.19	3.2	
		inc	11.00	79.00	1.3	4.1	0.00	0.25	0.16	1.4	
		inc	1.00	93.00	1.1	2.5	0.00	0.37	0.09	1.1	
		inc	2.00	113.00	1.2	4.4	0.00	0.01	0.02	1.0	
		inc	2.00	139.00	1.0	0.50	0.00	0.00	0.01	1.0	
		GNDD031	28.0	32.00	0.43	5.7	0.01	0.04	0.15	0.56	(2
		inc	1.1	48.00	3.3	17	0.02	0.33	0.34	3.7	
		inc	1.0	53.00	4.2	54	0.12	0.22	0.92	5.3	
		GNDD032	20.0	9.00	0.16	6.7	0.00	0.02	0.09	0.28	(2
		GNDD032	116.0	49.00	1.05	4.0	0.01	0.07	0.20	1.2	(2
		inc	3.0	77.00	0.93	34	0.09	0.02	2.11	2.3	
		and	10.0	101.00	6.1	18	0.04	0.47	0.11	6.4	
		inc	6.0	101.00	9.6	19	0.05	0.61	0.15	9.9	(1
		and	4.0	136.00	9.8	19	0.06	0.27	1.5	10.7	
		GNDD035	5.75	88.75	9.5	29	0.10	0.44	3.5	11.5	
		inc GMDD039	3.15 8.00	88.75 18.00	17.1 0.15	29 1.9	0.14 0.01	0.56 0.07	5.6 0.60	20.1 0.45	(1 (2
		GMDD039	1.00	67.60	24.5	58	0.27	1.8	3.9	27.0	(1
		GMDD040	8.68	116.72	5.5	12	0.06	0.00	2.2	6.7	

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JC	ORC Code explanation	Commentary									
			inc	2.90	122.50	11.8	24	0.14	0.00	4.2	14.1	(1)
			GMDD041	16.0	31.00	2.6	4.9	0.01	0.25	0.27	2.8	(2)
			inc	2.0	41.70	20.0	29	0.06	1.7	1.2	20.8	
			GMDD041	5.1	63.50	7.9	83	0.47	0.21	7.9	12.5	
			GMDD043	10.00	18.00	0.09	1.7	0.01	0.10	0.48	0.34	(2)
			GMDD043	0.30	70.50	25.9	81	0.33	3.1	9.37	31.2	
			(1) cut off c	of 10 g/t Au eo	quivalent							
			(2) cut off ().2 g/t Au equ	ivalent							
methods	-	techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	² Metallurgical recoveries for Au, Ag and Zn are assumed to be the same and so no factors have been applied				plied 6/145 all the					
			No top cuts hav	ve been applie	ed to the repo	rted grades.						
Relationship between mineralisation widths and intercept lengths	-	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to	The mineralisation information in mo the exploration pr	ost cases to co								stage
	_	the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are	Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins.									
		reported there should be a clear statement to this effect (eg 'down hole length true width not known').	Cross section diag widths from indiv		•	vith release o	of significa	nt interse	ections to a	allow estir	mation of	f true
Diagrams	-	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Representative m	aps and section	ons are provid	ed in the boo	dy of repo	rt.				
Balanced reporting	-	Where comprehensive reporting of all Exploration Results is not practicable representative reporting of	All available data	have been rep	oorted.							

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Issued Capital

648.7m shares

86.6m options

120m perf shares

16m perf rights

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.
	characteristics; potential deleterious or contaminating substances.	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation; Metallurgical test work.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

www.challengerex.com

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a salable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. 	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn) based on initial test results seem conservative. The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher floation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in comcentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project. CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Criteria <i>Classification</i>	 JORC Code explanation The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	Commentary The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut. The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1. The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated
		tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have
		not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1.
		The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		Historic 2003 NI43-101 (non-JORC Code compliant):					
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299578	14.2			
		Indicated	145001	14.6			
		Inferred	976539	13.4			
		Historic 2006 NI43-1	01 (non-JORC Code comp	liant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164294	12.5	52.1	2.5	
		Indicated	51022	12.4	36.2	2.6	
		Inferred	213952	11.7	46.6	2.3	
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The earlier (1996 and resource report. This i report were released three different groups	estimate has not been aud 2000) Mineral Resource E ndependent report was d to the TSX. This report co are seen to be realistic.	stimates were aud one to NI-43-101 s ncluded that "Deta	standard and th ailed resource of	ne results of this calculations made	
Discussion of relative accuracy/ confidence	- Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if	be relied upon. The av	fidence in the data quality railable geology and assay given the confidence limits inuity and top cut.	data correlate we	ll. The approac	h or procedure are	
	 such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be 				continuity in both		

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
	should be compared with production data where available.	
		No production data is available for comparison

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com