

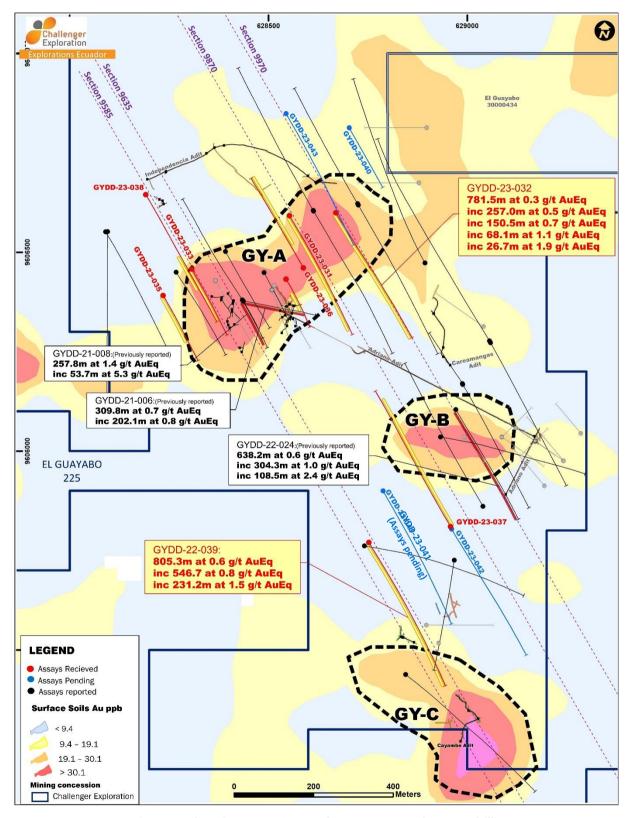
Continued drilling success as Challenger advances towards a maiden Mineral Resource Estimate in Ecuador

Highlights

- Drilling targeting extensions in the El Guayabo concession, as CEL gears up for the reporting of a Mineral Resource Estimate, continues to produce excellent results, including (refer Table 2):
 - 805.3m at 0.6 g/t AuEq² 0.5 g/t Au, 1.6 g/t Ag, 0.05 % Cu, 4.2 ppm Mo from 4.6m including; 546.7m at 0.8 g/t AuEq² - 0.7 g/t Au, 2.0 g/t Ag, 0.1 % Cu, 3.5 ppm Mo from 4.6m including; 231.2m at 1.5 g/t AuEq² - 1.4 g/t Au, 2.5 g/t Ag, 0.05 Cu, 3.7 ppm Mo (GYDD-23-039) (GY-C Phase 2 drilling hole mineralised from near surface)

 - 164.6 m at 0.6 g/t AuEq² 0.2 g/t Au, 3.8 g/t Ag, 0.2% Cu, 1.3 ppm Mo from 108.9m including; 26.7m at 1.0 g/t AuEq² - 0.4 g/t Au, 7.0 g/t Ag, 0.3% Cu, 1.4 ppm Mo from 224.2m and; 36.0m at 0.5 g/t AuEq² - 0.5 g/t Au, 0.8 g/t Ag, 0.04% Cu from 375.2m (GYDD-22-027)
- The current round of drilling has extended each of the GY-A, GY-B, and GY-C anomalies, in the Company's 100% owned El Guayabo concession, all of which remain open along strike and at depth
- Drill hole GYDD-23-039 (805.3m at 0.6 g/t AuEq including 231.3m at 1.5 g/t AuEq) is the first hole to demonstrate that the GY-C anomaly has the potential to host significant resources
- GY-C and GY-B appear to be joining to form one continuous zone of mineralisation 700 metres wide which remains open at depth and in both directions along strike

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said:


"This is another solid set of results which pave the way for our first resource in Ecuador. Of note is drill hole GYDD-23-039 which intersected over 800 metres at 0.6 g/t AuEq including 231.2 metres at 1.5 g/t AuEq. This hole has opened the potential for the third of the anomalies in our 100% owned ground, GY-C, to make a significant contribution to a Mineral Resource Estimate.

Adding to the potential it appears that GY-B and GY-C join forming one continuous zone at least 700 metres wide, open at depth and in both directions along strike. The Main Discovery Zone, or GY-A, also remains open at depth and along strike."

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Figure 1 - Plan View GY-A GY-B and GY-C targets and current drilling

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

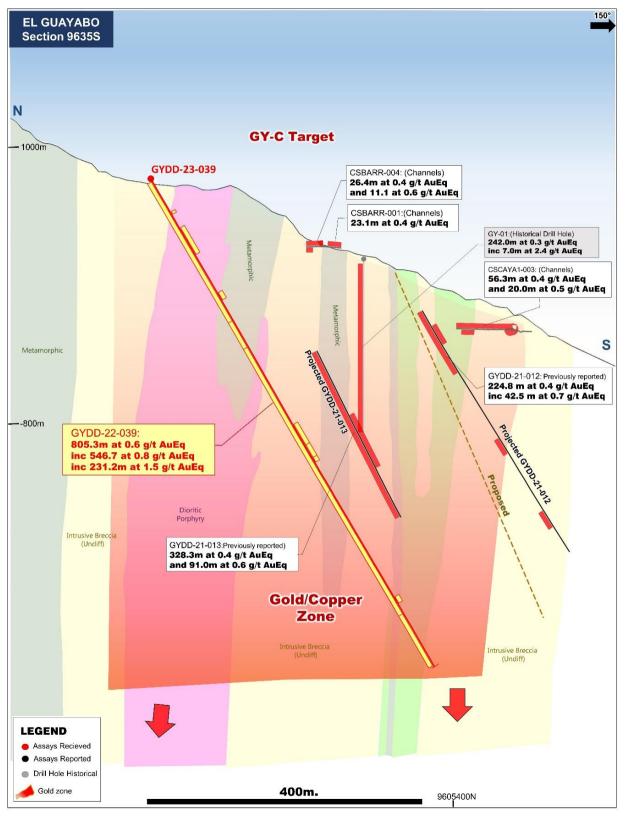
Challenger Exploration (ASX: CEL) ("CEL" the "**Company**") reports results from the next holes in its Phase 2 drilling program in Ecuador. The Phase 2 drill program was designed to allow the reporting of a maiden Mineral Resource Estimate in accordance with the JORC 2012 Code for the GY-A (Main Discovery Zone) and GY-B anomalies. The holes are located on the Company's 100% owned El Guayabo Gold-Copper Project in El Oro Province, Ecuador.

All holes intersected significant mineralisation with the results extending the mineralisation on the Main Discovery Zone (GY-A) 400 metres down dip and confirming that mineralisation is continuous over at least 700 metres of strike and remains open at depth and along strike.

GYDD-23-039, an exploration hole drilled to the north-west of the GY-C anomaly, is the first hole on GY-C to intersect significant zones of higher-grade mineralisation. The intersection of **805.3m at 0.6** g/t AuEq² including **546.7m at 0.8** g/t AuEq² including **231.2m at 1.5** g/t AuEq² is on trend with the mineralisation intersected at the GY-B anomaly and confirms the extension of mineralisation along the GY-B trend south-west into GY-C. The mineralisation remains strong and open in this direction.

GYDD-23-039 - GY-C Anomaly, El Guayabo concession

GYDD-23-039 was drilled north of the GY-C anomaly proper and to the west of the three previous holes drilled by the Company to test the GY-C anomaly (Figure 1). The mineralised intrusive breccias and porphyry intersected in anomaly GY-B had been mapped at surface extending 300 metres to the southwest of GY-B to the southwest. GYDD-22-039 was oriented in the same direction as drilling in the GY-B anomaly to best test the potential extensions of this mineralised breccia and porphyry units southwest from GY-B.


GYDD-23-039 intersected **805.3m at 0.6 g/t AuEq (0.5 g/t Au, 1.6 g/t Ag, 0.05% Cu, 4.2 ppm Mo)** from 4.6m including **546.7m at 0.8 g/t AuEq (0.7 g/t Au, 2.0 g/t Ag, 0.1 % Cu, 3.5 ppm Mo)** from 4.6m. This included a discrete higher-grade core of **231.2m at 1.5 g/t AuEq (1.4 g/t Au, 2.5 g/t Ag, 0.05 % Cu, 13.3 ppm Mo)** from 4.6m including **12.3m at 21.5 g/t AuEq (21.5 g/t Au, 1.5 g/t Ag, 0.05% Cu, 1.9 ppm Mo)** from 190.5m and containing a discrete interval of **1.5 m at 172.4 g/t AuEq (172.3 g/t Au, 7.9 g/t Ag, 0.04% Cu, 1.3 ppm Mo)** from 190.5m.

This intersection is the best intersection recorded on the GY-C anomaly with the previous three holes drilled on GY-C by the Company intersecting 594.5 metres at 0.3 g/t AuEq (GNDD-21-014), 130.9 metres at 0.4 g/t AuEq and 328.3 metres at 0.4 g/t AuEq (GYDD-21-013) and 224.8 metres at 0.4 g/t AuEq (GYDD-21-012). GYDD-23-039 provides the first indication of high-grade mineralisation at GY-C and that the anomaly could make a significant contribution to a Mineral Resource Estimate.

Additionally, GYDD-23-039 appears to confirm that intrusive breccias mapped at surface in the area are an extension of the mineralised intrusive breccia's intersected at the GY-B anomaly 200 metres to the northeast. These mineralised breccias on trend with the GY-B with mineralisation strong and open along strike. This suggests that the GY-B and GY-C anomalies join to form one large zone of mineralisation.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Figure 2 - Section showing GYDD-23-039

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Contact

A follow up hole (GYDD-23-041 assays pending) has been completed midway between GYDD-23-039 and the GYDD-22-037 on the western flank of GY-B (Figure 1). The hole is logged as having intersected 400 metres of intrusive breccia containing 1-3% sulphides which is consistent with other drill holes at that have intersected low to medium tenor mineralisation. Assuming assays for GYDD-23-041 confirm visual mineralisation, it will confirm that the GY-B to GY-C trend is one continuous zone of mineralisation extending over 700 metres remaining open at depth and in both directions along strike.

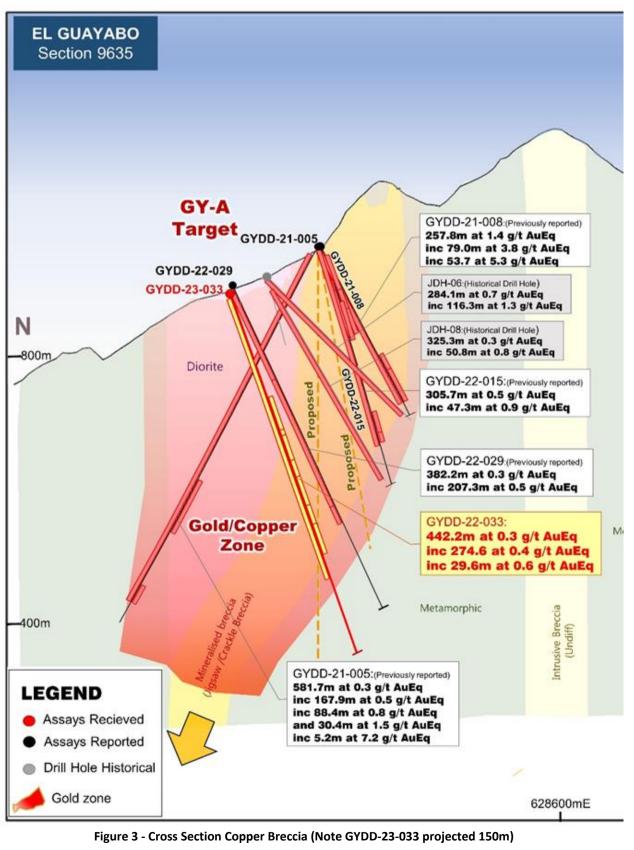
GY-A Anomaly - High-grade Copper Breccia

The Copper Breccia is consistent zone of higher-grade Cu-Au-Ag mineralisation located within the GY-A anomaly and is surrounded by a broad halo of lower-grade predominantly Au-Ag-Mo mineralisation that comprises most of GY-A. It covers approximately 250 metres along strike, averages 125 metres wide, and dips sub-vertically (Figure 2 - Note GYDD-033 projected 150 metres east onto section).

It has a distinct texture and is logged as a jigsaw-shatter breccia containing open space which is filled by quartz and carbonate crystals with 5-10% sulphides to semi-massive sulphides associated with the open spaces. It is believed to have been formed by a second stage of mineralisation overprinting the Au-Ag-Mo mineralisation with higher grade Cu-Ag mineralisation. The average drill intercept within the Copper breccia is greater than 1 g/t AuEq and the high-grade mineralisation starts at surface.

Intersections in the copper breccia include 257.8 metres at 1.4 g/t AuEq including 53.7 metres at 5.3 g/t AuEq (GYDD-21-008) and 309.8 metres at 0.8 g/t AuEq including 33.0 metres at 1.3 g/t AuEq and 53.6 metres at 1.5 g/t AuEq (GYDD-21-006).

GYDD-23-033 and GYDD-23-038 - GY-A Anomaly, El Guayabo concession


Both holes GYDD-23-033 and GYDD-23-038 intersected the Copper Breccia extending this high-grade zone of mineralisation 300 metres deeper and confirming its continuity along strike.

GYDD-23-033 was drilled on the GY-A anomaly 150 metres along strike west of and downdip of a series of historic holes that originally intersected the Copper Breccia. GYDD-22-033 intersected **442.2 m at 0.3 g/t AuEq (0.3 g/t Au, 0.2 g/t Ag, 0.1% Cu, 3.7 ppm Mo)** from 7.0m including **247.6m at 0.4 g/t AuEq (0.2 g/t Au, 3.0 g/t Ag, 0.1% Cu, 4.6 ppm Mo)** from 164.3m. The intersection included a higher grade core of **151.4m at 0.5 g/t AuEq (0.2 g/t Au, 4.0 g/t Ag, 0.1% Cu, 4.1 ppm Mo)** from 216.2 including **8.8m at 0.7 g/t AuEq (0.5 g/t Au, 11.8 g/t Ag, 0.1% Cu, 1.6 ppm Mo)** from 164.3m and **25.8m at 0.7 g/t AuEq (0.4 g/t Au, 4.9 g/t Ag, 0.2% Cu, 7.8 ppm Mo)** from 264.3m and **29.6m at 0.6 g/t AuEq (0.3 g/t Au, 5.8 g/t Ag, 0.2% Cu, 1.8 ppm Mo)** from 335.0m. This higher-grade zone had the typical jigsaw-shatter breccia texture and mineral assemblage seen in the Copper Breccia.

GYDD-23-038 was collared to test 200 metres downdip of GYDD-23-033. The hole intersected two zones of mineralisation **77.6 m at 0.3 g/t AuEq (0.1 g/t Au, 2.0 g/t Ag, 0.1% Cu, 1.1 ppm Mo)** from 157.7m including **22.1m at 0.4 g/t AuEq (0.2 g/t Au, 2.0 g/t Ag, 0.1% Cu, 1.1 ppm Mo)** from 212.2m. This zone of mineralisation correlates with the typical lower-grade halo Au-Ag-Mo mineralisation in GY-A.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

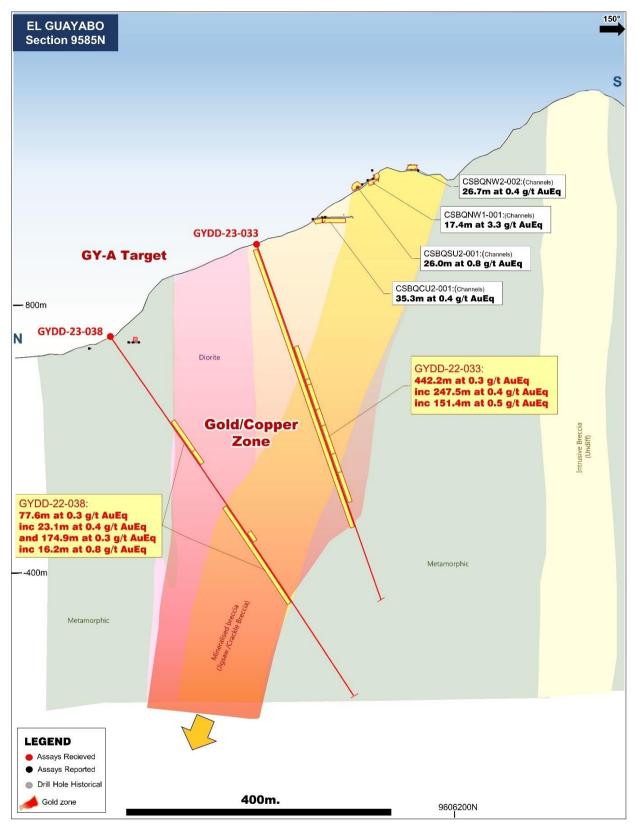
The second deeper zone of mineralisation intersection included a higher grade zone of **161.4m at 0.3** g/t AuEq (0.1 g/t Au, 2.1 g/t Ag, 0.1% Cu, 2.7 ppm Mo) from 321.9 including **16.2m at 0.8 g/t AuEq** (0.5 g/t Au, 4.5 g/t Ag, 0.1% Cu, 4.0 ppm Mo) from 360.3m. This higher grade 161.4 metre zone had the typical jigsaw-shatter breccia texture and mineral assemblage seen In the Copper Breccia and is interpreted as an extension of the Copper Breccia 80 metres west along strike from GYDD-21-008 (257.8 metres at 1.4 g/t AuEq) and 200 metres down-dip of GYDD-23-033.

GYDD-23-034 - GY-A Anomaly, El Guayabo concession

GYDD-23-034 was drilled on the GY-A anomaly 40 metres to the east of the known extent of the Copper Breccia. GYDD-23-034 intersected **164.6m at 0.6 g/t AuEq (0.2 g/t Au, 3.8 g/t Ag, 0.2% Cu, 1.3 ppm Mo**) from 108.9m including **21.0m at 0.9 g/t AuEq (0.5 g/t Au, 3.5 g/t Ag, 0.2% Cu, 1.1 ppm Mo)** from 161.6m and **26.7m at 1.0 g/t AuEq (0.3 g/t Au, 7.0 g/t Ag, 0.3% Cu, 1.4 ppm Mo)** from 224.2m. Additionally, the hole intersected a second deeper zone of mineralisation with an intersection of **36.0m at 0.5 g/t AuEq (0.5 g/t Au, 0.8 g/t Ag, 0.04% Cu, 1.1 ppm Mo)** from 375.2m.

The first zone of mineralisation (**164.6m at 0.6 g/t AuEq**) has the same mineralogy and texture as the Copper Breccia and extends the Copper Breccia 40 metres east along strike. Follow-up drilling to test for extensions to the high-grade copper breccia mineralisation both downdip of GYDD-23-034 and further east along strike will be conducted in the Company's next drill program at El Guayabo. The deeper zone of mineralisation appears to be a separate, and unexpected, deeper zone of mineralisation which will be followed up in future drill campaigns.

GYDD-23-032 - GY-A Anomaly, El Guayabo concession

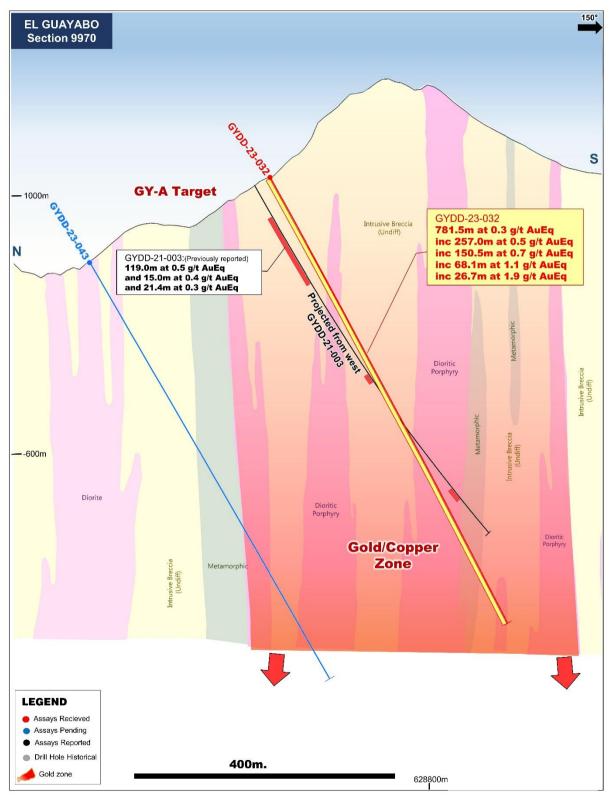

GYDD-23-032 was drilled between CEL holes GYDD-22-027 (871.9 metres at 0.3 g/t AuEq including 275.3 metres at 0.4 g/t AuEq) and GYDD-21-003 (119.2 metres at 0.5 g/t AuEq) in a what has been interpreted as a lower grade section of the GY-A anomaly.

GYDD-23-032 intersected **781.5m at 0.3 g/t AuEq (0.2 g/t Au, 1.3 g/t Ag, 0.04% Cu, 8.6 ppm Mo)** from surface to the end of the hole including **257.0m at 0.5 g/t AuEq (0.4 g/t Au, 1.8 g/t Ag, 0.04 Cu, 6.5 ppm Mo)** from 120.3m. This included a significant high-grade zone of **68.1m at 1.1 g/t AuEq (1.0 g/t Au, 3.6 g/t Ag, 0.1% Cu, 9.3 ppm Mo)** from 120.3m including and **25.7m at 1.9 g/t AuEq (1.7 g/t Au, 5.3 g/t Ag, 0.1% Cu, 13.9 ppm Mo)** from 162.7m.

The intersection in GYDD-23-032 was significantly higher-grade than both surrounding holes GYDD-22-027 and GYDD-21-003. Additionally, it was considerably wider than the intersection recorded in GYDD-21-003 confirming that the GYDD-21-003 hole location, impacted by the topography, was sub-optimal and mineralisation has a true width of over 400 metres in this location. Mineralisation remains open downdip of GYDD-23-032 with drillhole GYDD-23-043 (assays pending) collared to test 300 metres downdip of GYDD-23-032. GYDD-23-043 is logged as intersecting over 500 metres of Intrusive breccia and dioritic intrusives containing 2-5% sulphides compared to GYDD-23-032 which was logged as containing 1.5-3% sulphides.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Figure 4 - Cross Section Copper Breccia GYDD-23-033 and GYDD-23-038


Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Contact

Figure 5 - Cross Section GYDD-23-032 and GYDD-23-043 (assays pending)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Next steps

The current drill program in Ecuador is now complete. Assays are pending from drillholes GYDD-23-040 to drillhole GYDD-23-043 as shown in Table 1 below. This Company intends to report a maiden Mineral Resource Estimate in accordance with the JORC 2012 Code during May 2023.

Drillhole	Target	Depth (m)	Status
GYDD-23-040	GY-A	352.4	Complete, assays pending
GYDD-23-041	GY-C	779.0	Complete, assays pending
GYDD-23-042	GY-A	746.4	Complete, assays pending
GYDD-23-043	GY-A	742.2	Complete, assays pending

Table 1 - Status of current Phase 2 drill program El Guayabo concession

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer	Scott Funston	Media Enquiries
Managing Director	Chief Financial Officer	Jane Morgan
+61 411 885 979	+61 413 867 600	+ 61 405 555 618
kris.knauer@challengerex.com	scott.funston@challengerex.com	jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

13 Jan 2022- First drill hole in Ecuador confirms the discovery of a major gold-copper system with a 748 metre Intersection **23 Feb 2022** - Ongoing drilling at the El Guayabo Project in Ecuador confirms the discovery of a major Au-Cu-Ag mineralised system

9 Mar 2022 - Significant high-grade intersection at Challenger's 100% owned El Guayabo gold-copper Project in Ecuador **22 April 2022** - Drilling confirms significant scale over multiple zones at CEL's 100% owned El Guayabo Au-Cu Project **6 June 2022** - Two New Copper Gold Discoveries at Colorado V Ecuador

4 July 2022 - Drilling Expands Colorado V Discoveries in Ecuador

5 October 2022 - Several 500 metre intersections continue to extend CEL's gold discoveries in Colorado V

18 January 2023 - Drilling success continues at the El Guayabo project

05 April 2023 - Latest results for Ecuador yield a 1.2 kilometre intersection

See below for information regarding AuEq's reported in Table 1 (over the page) under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$22 Oz, Cu US\$9,650 /t, Mo US\$40,500 /t,
- Metallurgical recoveries are estimated to be Au (85%), Cu (85%), Ag (60%) Mo (50%) across all ore types.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (22/1780)] + [Cu (%) x (9650/100*31.1/1780)] + [Mo (%) x (40500/100*31.1/1780)].
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have reasonable potential to be recovered and sold.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights

Australian Registered Office Level 1

1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Drill Hole	From	То	Interval	Au	Ag	Cu	Мо	AuEq	Comments	Gram
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		Metres
GYDD-23-031	1.0	532.0	531.0	0.2	0.5	0.0	1.2	0.3	0.1 g/t AuEq cut off	159.3
inc	1.0	24.9	23.9	0.9	0.5	0.1	0.8	0.9	1.0 g/t AuEq cut off	21.6
and	152.6	185.7	33.1	0.5	1.5	0.0	1.7	0.6	1.0 g/t AuEq cut off	19.9
and	292.1	308.1	16.0	0.6	0.5	0.0	1.5	0.6	1.0 g/t AuEq cut off	9.6
GYDD-23-032	0.0	781.5	781.5	0.2	1.3	0.0	8.6	0.3	0.1 g/t AuEq cut off	212.6
inc	120.3	377.2	257.0	0.4	1.8	0.0	6.5	0.5	1.0 g/t AuEq cut off	122.6
inc	120.3	270.7	150.5	0.6	2.4	0.0	7.9	0.7	1.0 g/t AuEq cut off	100.4
inc	120.3	188.3	68.1	1.0	3.6	0.1	9.3	1.1	1.0 g/t AuEq cut off	77.6
and	162.7	188.3	25.7	1.7	5.3	0.1	13.9	1.9	1.0 g/t AuEq cut off	48.9
GYDD-23-033	7.0	449.2	442.2	0.2	2.1	0.1	3.7	0.3	0.1 g/t AuEq cut off	125.1
inc	164.3	411.9	247.6	0.2	3.0	0.1	4.6	0.4	1.0 g/t AuEq cut off	99.5
inc	216.2	367.6	151.4	0.2	4.0	0.1	4.1	0.5	1.0 g/t AuEq cut off	70.8
inc	216.8	225.0	8.2	0.5	11.8	0.1	1.6	0.7	1.0 g/t AuEq cut off	6.1
and	264.3	290.0	25.8	0.4	4.9	0.2	7.8	0.7	1.0 g/t AuEq cut off	18.3
and	335.0	364.6	29.6	0.3	5.8	0.2	1.8	0.6	1.0 g/t AuEq cut off	18.5
GYDD-23-034	108.9	273.5	164.6	0.2	3.8	0.2	1.3	0.6	0.1 g/t AuEq cut off	94.4
inc	161.6	182.6	21.0	0.5	3.5	0.2	1.1	0.9	1.0 g/t AuEq cut off	18.3
and	224.2	250.9	26.7	0.3	7.0	0.3	1.4	1.0	1.0 g/t AuEq cut off	26.3
and	375.2	411.2	36.0	0.5	0.8	0.0	1.1	0.5	1.0 g/t AuEq cut off	19.3
GYDD-23-035	0.0	268.7	268.7	0.1	0.7	0.0	4.6	0.2	0.1 g/t AuEq cut off	55.9
inc	55.8	84.0	28.2	0.4	1.0	0.0	1.4	0.4	1.0 g/t AuEq cut off	12.3
and	240.5	255.2	14.7	0.4	1.1	0.1	6.0	0.5	1.0 g/t AuEq cut off	7.7
GYDD-23-036	65.9	67.4	1.5	2.9	1.7	0.0	0.8	2.9	1.0 g/t AuEq cut off	4.4
and	80.9	99.8	19.0	0.7	1.7	0.0	1.5	0.7	0.1 g/t AuEq cut off	13.5
and	189.9	767.5	577.6	0.1	1.0	0.0	4.5	0.2	0.1 g/t AuEq cut off	123.1
inc	189.9	353.2	163.3	0.3	0.8	0.0	2.4	0.4	1.0 g/t AuEq cut off	63.7
inc	189.9	253.3	63.4	0.6	0.7	0.0	1.2	0.7	1.0 g/t AuEq cut off	42.6
GYDD-23-037	0.0	767.2	767.2	0.1	1.4	0.0	12.7	0.2	0.1 g/t AuEq cut off	149.5
inc	81.9	183.7	101.8	0.2	1.9	0.0	4.3	0.3	1.0 g/t AuEq cut off	32.4
inc	150.7	173.2	22.5	0.3	2.1	0.1	3.4	0.5	1.0 g/t AuEq cut off	11.3
and	390.5	438.8	48.3	0.1	2.5	0.1	16.4	0.3	1.0 g/t AuEq cut off	14.5
GYDD-23-038	157.7	235.3	77.6	0.1	2.0	0.1	1.1	0.3	0.1 g/t AuEq cut off	20.9
inc	212.2	235.3	23.1	0.2	2.0	0.1	1.1	0.4	1.0 g/t AuEq cut off	9.8
and	321.9	483.3	161.4	0.1	2.1	0.1	2.7	0.3	0.1 g/t AuEq cut off	40.7
inc	321.9	376.5	54.7	0.2	3.4	0.1	3.3	0.4	1.0 g/t AuEq cut off	21.9
inc	360.3	376.5	16.2	0.5	4.5	0.1	4.0	0.8	1.0 g/t AuEq cut off	12.2
GYDD-23-039	4.6	809.9	805.3	0.5	1.6	0.0	4.2	0.6	0.1 g/t AuEq cut off	470.3
inc	4.6	551.3	546.7	0.7	2.0	0.1	3.5	0.8	1.0 g/t AuEq cut off	429.4
inc	4.6	235.8	231.2	1.4	2.5	0.1	3.7	1.5	1.0 g/t AuEq cut off	351.6
inc	108.0	117.9	9.9	1.0	3.3	0.0	2.5	1.1	1.0 g/t AuEq cut off	10.6
and	190.5	202.8	12.3	21.4	1.5	0.0	1.9	21.5	1.0 g/t AuEq cut off	263.9
inc	190.5	192.0	1.5	172.3	8.0	0.0	1.3	172.4	1.0 g/t AuEq cut off	258.7

Table 2 - Significant Intersections reported in this release

See previous page for information regarding AuEq's reported in Table 1 under the JORC Code.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America with a **2.8 million ounce gold Resource Estimate** recently announced for the Hualilan Gold Project in San Juan, Argentina.

The Company strategy is for the 100% owned Hualilan Gold Project to provide a high-grade low Capex operation in the near term while it prepares for a much larger bulk gold operation at El Guaybo in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive drilling with over 150 historical and almost 900 CEL drill-holes. The Company has released an Interim JORC 2012 Compliant resource of 2.8 Moz AuEq which remains open in most directions. This resource contains a high-grade core 9.9 Mt at 5.0 g/t AuEq for 1.6 Moz AuEq and 29.1Mt at 2.2 g/t AuEq for 2.4 MOz AuEq within the larger MRE of 60.6 Mt at 1.4 g/t AuEq for 2.8 Moz AuEq. The resource was based on 216,000 metres of CEL's 264,000 metre drill program. In the past 3 years CEL has completed more than 220,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 67.7m @ 7.3 g/t Au, 5.7 g/t Ag, 0.6% Zn, and 63.3m @ 8.5 g/t Au, 7.6 g/t Ag, 2.8% Zn. This drilling intersected high-grade gold over 3.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program includes a Scoping Study followed by a PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and is located 5 kilometres along strike from the 17-million-ounce Cangrejos Gold Project¹. Prior to CEL the project was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. CEL's maiden drilling program confirmed the discovery of a major Au-Cu-Ag-Mo gold system spanning several zones of significant scale. Results from CEL's maiden drill program included 257.8m at 1.4 g/t AuEq including 53.7m at 5.3 g/t AuEq and 309.8m at 0.7 g/t AuEq including 202.1m at 0.8 g/t AuEq, and 528.7m at 0.5 g/t AuEq from surface to the end of the hole including **397.1m at 0.6 g/t AuEq** from surface. The Company has drilled fourteen regionally significant Au-soil anomalies with over 500 metres of mineralisation intersected at seven of these fourteen anomalies, confirming the potential for a major bulk gold system at El Guayabo. The Company has recently completed Phase 2 of diamond core drilling within the 100% owned Guayabo concession designed to allow the reporting of a maiden JORC 2012 Compliant Mineral Resource Estimate for the main GY-A (Discovery Zone) and GY-B anomaly.

¹ Source : Lumina Gold (TSX : LUM) July 2020 43-101 Technical Report

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Mineral Resource Estimate - Hualilan Gold Project

Domain	Category	Mt	Au g/t	Ag g/t	Zn %	Pb %	AuEq g/t	AuEq (Mozs)
US\$1800 optimised shell	Indicated	45.5	1.0	5.1	0.4	0.06	1.3	1.9
> 0.30 ppm AuEq	Inferred	9.6	1.1	7.3	0.4	0.06	1.2	0.4
Below US\$1800 shell >1.0ppm AuEq	Inferred	5.5	2.1	10.7	1.0	0.06	2.6	0.5
	Total	60.6	1.1	6.0	0.4	0.06	1.4	2.8

Note: Some rounding errors may be present

Hualilan MRE, March 2023

¹ Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1900 Oz, Ag US\$24 Oz, Zn US\$4,000/t, Pb US\$2000/t
- Metallurgical recoveries are estimated to be Au (95%), Ag (91%), Zn (67%) Pb (58%) across all ore types (see JORC Table 1 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x 0.012106] + [Zn (%) x 0.46204] + [Pb (%) x 0.19961]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

COMPETENT PERSON STATEMENT – EXPLORATION RESULTS AND MINERAL RESOURCES

The information that relates to sampling techniques and data, exploration results, geological interpretation and Mineral Resource Estimate has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results and Mineral Resources. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

The Mineral Resource Estimate for the Hualilan Gold Project was first announced to the ASX on 1 June 2022 and updated 29 March 2023. The Company confirms it is not aware of any information or assumptions that materially impacts the information included in that announcement and that the material assumptions and technical parameters underpinning the Mineral Resource Estimate continue to apply and have not materially changed.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 El Guayabo: CEL Drilling: CEL have drilled HQ diamond core which is sampled by cutting the core longitudinal into two halves. One half is retained for future reference and the other half is sent for sampling. Sampling is done according to the geology. Sample lengths range from 0.5 to 2.5 metres. The average sample length is 1.5m. Samples are prepared at SGS Laboratories in Guayaquil for 30g fire assay and 4-acid digest ICPM and then assayed in SGS Lima. The sample size is considered representative for the geology and style of mineralisation intersected. All the core All collected material is sampled for assay. Historic Drilling: Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards at 25 sample intervals as a control on analytical quality Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorpti

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
	face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical records do not indicate if the core was oriented Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 El Guayabo: CEL Drilling: Core run lengths recovered are recorded against the drillers depth markers to determine core recovery. Core sample recovery is high using standard HQ and NQ drilling No relationship between sample recovery and grade has been observed. Historic Drilling: In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes
		 Core from Goldking has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary						
ogging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) 	 All drill current drill core and all available historic drill core has been logged qualitatively and quantitatively where appropriate. All core logged has been photographed after logging and before sampling. Peer review of core logging is done to check that the logging is representative. 100% of all core including all relevant intersections are logged Progress of current and historic El Guayabo and Colorado V drill core re-logging and re-sampling is summar below: Historic EL Guayabo Drilling 						
	photography.	-	_		Core		Total	
	 The total length and percentage of the relevant intersections logged. 	Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples	
	relevant intersections logged.	GY-01	249.2	Complete	Complete	Partial	25	
		GY-02	272.9	Complete	Complete	Partial	88	
		GY-03	295.99	Pending	Complete	Pending		
		GY-04	172.21	Pending	Complete	Pending		
		GY-05	258.27	Partial	Complete	Partial	56	
		GY-06	101.94	Pending	Complete	Pending		
		GY-07	127.0	Pending	Complete	Pending		
		GY-08	312.32	Pending	Complete	Pending		
		GY-09	166.25	Pending	Complete	Pending		
		GY-10	194.47	missing core	missing core	missing core		
		GY-11	241.57	Complete	Complete	Partial	84	
		GY-12	255.7	Partial	Complete	Pending		
		GY-13	340.86	missing core	missing core	missing core		
		GY-14	309.14	missing core	missing core	missing core		
		GY-15	251.07	missing core	missing core	missing core		
		GY-16	195.73	missing core	missing core	missing core		
		GY-17	280.04	Complete	Complete	Partial	36	
		GY-18	160.35	Pending	Complete	Pending		
		GY-19	175.42	Pending	Complete	Pending		
		Logged (m)	1,043.71	Re-logged		Samples Submitted	289	
		Total (m)	4,185.01	Odin Drilled				

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office Level 1

1205 Hay Street

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman West Perth WA 6005 Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

JORC Code explanation	Commentary					
	JDH-01	236.89	missing core	missing core	missing core	
	JDH-02	257.62	missing core	missing core	missing core	
	JDH-03	260.97	missing core	missing core	missing core	
	JDH-04	219.00	missing core	missing core	missing core	
	JDH-05	210.37	missing core	missing core	missing core	
	JDH-06	302.74	Complete	Complete	Partial	98
	JDH-07	105.79	missing core	missing core	missing core	
	JDH-08	352.74	missing core	missing core	missing core	
	JDH-09	256.70	Complete	Complete	Partial	49
	JDH-10	221.64	Complete	Complete	Partial	43
	JDH-11	217.99	Pending	Complete	Pending	
	JDH-12	124.08	Complete	Complete	Partial	22
	JDH-13	239.33	Complete	Complete	Partial	21
	JDH-14	239.32	Complete	Complete	Partial	30
	Logged (m)	1,038.09	Re-logged		Samples Submitted	263
	Total (m)	3,245.18	Newmont Drilled	ł		
	CEL El Guayabo Dri Hole_ID	ll Hole Processin Depth (m)	ng Completed durin Logging Status	ng Drill Camp #1, Core Photograph	Phase #1 2021-2022 Sampling Status	Total Samples
	GYDD-21-001	800.46	Complete	Complete	Complete	581
	GYDD-21-002	291.70	Complete	Complete	Complete	204
	GYDD-21-002A	650.58	Complete	Complete	Complete	282
	GYDD-21-003	723.15	Complete	Complete	Complete	545
	GYDD-21-004	696.11	Complete	Complete	Complete	513
	GYDD-21-004 GYDD-21-005	696.11 632.05	Complete Complete	Complete Complete	Complete Complete	513 445

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

GYDD-21-007

GYDD-21-008

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

651.80

283.68

Complete

Complete

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Complete

Complete

Complete

Complete

407

214

Criteria	JORC Code explanation	Commentary					
		GYDD-21-009	692.67	Complete	Complete	Complete	517
		GYDD-21-010	888.60	Complete	Complete	Complete	620
		GYDD-21-011	314.46	Complete	Complete	Complete	227
		GYDD-21-012	797.65	Complete	Complete	Complete	588
		GYDD-21-013	517.45	Complete	Complete	Complete	388
		GYDD-22-014	783.60	Complete	Complete	Complete	546
		GYDD-22-015	368.26	Complete	Complete	Complete	265
		GYDD-22-016	469.75	Complete	Complete	Complete	314
		Logged (m)	9,927.23			Samples Submitted	6,915
		Total Drilled (m)	9,927.23				

CEL El Guayabo Drill Hole Processing Completed during Drill Camp #1, Phase # 2 2022-2023

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-22-017	860.75	Complete	Complete	Complete	601
GYDD-22-018	734.05	Complete	Complete	Complete	534
GYDD-22-019	861.05	Complete	Complete	Complete	632
GYDD-22-020	750.00	Complete	Complete	Complete	544
GY2DD-22-001	776.40	Complete	Complete	Complete	520
GYDD-22-021	812.85	Complete	Complete	Complete	596
GYDD-22-022	702.85	Complete	Complete	Complete	514
GYDD-22-023	795.55	Complete	Complete	Complete	573
GYDD-22-024	650.00	Complete	Complete	Complete	466
GYDD-22-025	1194.05	Complete	Complete	Complete	881
GYDD-22-026	1082.45	Complete	Complete	Complete	803
GYDD-22-027	875.35	Complete	Complete	Complete	658
GYDD-22-028	521.20	Complete	Complete	Complete	364
GYDD-22-029	528.95	Complete	Complete	Complete	382
GYDD-22-030	691.20	Complete	Complete	Complete	506

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

JORC Code explanation	Com	mentary					
	GYD	D-23-031	696.40	Complete	Complete	Complete	486
	GYD	D-23-032	781.45	Complete	Complete	Complete	586
	GYD	D-23-033	565.85	Complete	Complete	Complete	387
	GYD	D-23-034	413.65	Complete	Complete	Complete	307
	GYD	D-23-035	381.85	Complete	Complete	Complete	258
	GYD	D-23-036	767.45	Complete	Complete	Complete	573
	GYD	D-23-037	823.10	Complete	Complete	Complete	607
	GYD	D-23-038	651.80	Complete	Complete	Complete	466
	GYD	D-23-039	812.40	Complete	Complete	Complete	598
	GYD	D-23-040	352.40	Complete	Complete	Complete	255
	GYD	D-23-041	779.00	Complete	Complete	Complete	543
	GYD	D-23-042	746.40	Complete	Complete	Complete	528
	Logg	ged (m)	19,608.45			Samples Submitted	14,168
	Tota	al Drilled (m)	19,608.45				
	•	quantitativ	/e.			and structure. Where p	ossible, logging is
	•	 Core has b quantitativ 	ve. core re-logging	lithology, alteration			ossible, logging is
	•	 Core has b quantitativ Colorado V c ric Colorado V l 	ve. core re-logging a Drilling	and re-sampling is s	summarized belo Core	w:	Total
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID 	ve. core re-logging a Drilling Depth (m)	and re-sampling is s	summarized belo Core Photograph	Sampling Status	Total Samples
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZK0-1 	ve. core re-logging a Drilling Depth (m) 413.6	and re-sampling is s Logging Status Complete	summarized belo Core Photograph Complete	Sampling Status Samples Submitted	Total Samples 281
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZK0-1 ZK0-2 	ve. core re-logging a Drilling Depth (m) 413.6 581.6	and re-sampling is s Logging Status Complete Complete	summarized belo Core Photograph Complete Complete	Sampling Status Samples Submitted Samples Submitted	Total Samples 281 388
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZK0-1 	ve. core re-logging a Drilling Depth (m) 413.6	and re-sampling is s Logging Status Complete Complete Complete	summarized belo Core Photograph Complete Complete Complete	Sampling Status Samples Submitted Samples Submitted Samples Submitted	Total <u>Samples</u> 281 388 330
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZKO-1 ZKO-2 ZKO-3 ZKO-4 	ve. core re-logging a Drilling Depth (m) 413.6 581.6 463.0	and re-sampling is s Logging Status Complete Complete	summarized belo Core Photograph Complete Complete Complete Complete	Sampling Status Samples Submitted Samples Submitted	Total Samples 281 388 330 350
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZK0-1 ZK0-2 ZK0-3 	ve. core re-logging a Drilling <u>Depth (m)</u> 413.6 581.6 463.0 458.0	and re-sampling is s Logging Status Complete Complete Complete Complete Complete	summarized belo Core Photograph Complete Complete Complete	Sampling Status Samples Submitted Samples Submitted Samples Submitted Samples Submitted	Total <u>Samples</u> 281 388 330
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZK0-1 ZK0-2 ZK0-3 ZK0-4 ZK0-5 	ve. core re-logging a Drilling Depth (m) 413.6 581.6 463.0 458.0 624.0	and re-sampling is s Logging Status Complete Complete Complete Complete Complete Complete	Summarized belo Core Photograph Complete Complete Complete Complete Complete	Sampling Status Samples Submitted Samples Submitted Samples Submitted Samples Submitted Samples Submitted Samples Submitted	Total Samples 281 388 330 350 482
	•	 Core has b quantitativ Colorado V c ric Colorado V l Hole_ID ZKO-1 ZKO-2 ZKO-3 ZKO-4 ZKO-5 ZK1-1 	ve. core re-logging a Drilling Depth (m) 413.6 581.6 463.0 458.0 624.0 514.6	and re-sampling is a Logging Status Complete Complete Complete Complete Complete Complete Complete Complete	Summarized belo Core Photograph Complete Complete Complete Complete Complete Complete Complete	Sampling Status Samples Submitted Samples Submitted Samples Submitted Samples Submitted Samples Submitted	Total Samples 281 388 330 350 482

Criteria	JORC Code explanation	n Com	mentary					
			ZK1-4	379.5	Complete	Complete	Samples Submitted	267
			ZK1-5	419.5	Complete	Complete	Samples Submitted	266
			ZK1-6	607.5	Complete	Complete	Samples Submitted	406
			ZK1-7	453.18	Complete	Complete	Samples Submitted	370
			ZK1-8	556.0	Complete	Complete	Not Re-Sampled	
			ZK1-9	220.0	Complete	Complete	Samples Submitted	140
			ZK2-1	395.5	Complete	Complete	Samples Submitted	320
			ZK3-1	372.48	Complete	Complete	Samples Submitted	250
			ZK3-1A	295.52	Pending	Pending	Pending	
			ZK3-2	364.80	Complete	Complete	Samples Submitted	235
			ZK3-4	322.96	Complete	Complete	Samples Submitted	156
			ZK4-1	434.0	Complete	Complete	Not Re-sampled	
			ZK4-2	390.5	Complete	Complete	Not Re-sampled	
			ZK4-3	650.66	Complete	Complete	Not Re-sampled	
			ZK4-4	285.0	Complete	Complete	Not Re-sampled	
			ZK5-1	321.90	Complete	Complete	Not Re-sampled	
			ZK5-2	321.0	Complete	Complete	Not Re-sampled	
			ZK5-3	446.5	Complete	Complete	Not Re-sampled	
			ZK5-4	508.0	Complete	Complete	Not Re-sampled	
			ZK5-5	532.0	Complete	Complete	Samples Submitted	378
			ZK6-1	552.6	Complete	Complete	Not Re-sampled	
			ZK6-2	531	Complete	Complete	Not Re-sampled	
			ZK10-1	454.0	Complete	Complete	Samples Submitted	229
			ZK10-2	318.82	Complete	Complete	Samples Submitted	206
			ZK10-3	331.52	Complete	Complete	Samples Submitted	220
			ZK11-1	237.50	Complete	Complete	Not Re-sampled	
			ZK12-1	531.50	Complete	Complete	Not Re-sampled	
			ZK12-2	510.6	Complete	Complete	Not Re-sampled	
			ZK13-1	394.0	Complete	Complete	Samples Submitted	246
nger Exploration Limited 23 591 382 EL	Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Mr Fletcher Mr Sergio R Mr Pini Alth	uer, MD and CEO Quinn, Chairman otondo, Exec. Directoi aus, Non Exec Directo ckett. Non Exec Directo	r			

www.challengerex.com

Criteria	JORC Code explanation	Com	mentary					
			ZK13-2	194.0	Complete	Complete	Not Re-sampled	
			ZK16-1	324.0	Complete	Complete	Samples Submitted	212
			ZK16-2	385.83	Complete	Complete	Samples Submitted	223
			ZK18-1	410.5	Complete	Complete	Samples Submitted	286
			ZK19-1	548.60	Complete	Complete	Not Re-sampled	
			ZK100-1	415.0	Complete	Complete	Not Re-sampled	
			ZK103-1	524.21	Complete	Complete	Not Re-sampled	
			ZK105-1	404.57	Complete	Complete	Not Re-sampled	
			ZK205-1	347.0	Complete	Complete	Samples Submitted	211
			SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
			SAZKO-2A	407.5	Complete	Complete	Samples Submitted	260
			SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
			SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
			СК2-1	121.64	missing core	missing core	missing core	
			СК2-2	171.85	missing core	missing core	missing core	
			СК2-3	116.4	missing core	missing core	missing core	
			СК2-4	146.12	missing core	missing core	missing core	
			СК2-5	357.56	Complete	Complete	Complete	
			СК2-6	392.56	Complete	Complete	Complete	
			CK3-1	185.09	missing core	missing core	missing core	
			СКЗ-2	21.75	missing core	missing core	missing core	
			СКЗ-З	138.02	missing core	missing core	missing core	
			CK5-1	273.56	Complete	Complete	Not Re-Sampled	
			СК5-2	273.11	Complete	Complete	Not Re-Sampled	
			CK13-1	227.1	Complete	Complete	Not Re-Sampled	
			СК13-2	231.16	Complete	Complete	Not Re-Sampled	
			CK13-3	197.06	Complete	Complete	Not Re-Sampled	
			СК13-4	176.57	Complete	Complete	Not Re-Sampled	
			CK13-5	184.70	Complete	Complete	Not Re-Sampled	
enger Exploration Limited 123 591 382 EEL	Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Mr Fletcher C Mr Sergio Ro Mr Pini Altha	er, MD and CEO Quinn, Chairman tondo, Exec. Directd us, Non Exec Direct kett. Non Exec Direct	or			

Criteria	JORC C	Code ex	planation

Commentary

Commentary					
CK21-1	143.47	Complete	Complete	Not Re-Sampled	
Logged (m)	25,315.07	Re-logged		Samples Submitted	7,894
Total (m)	24,414.20	Core Shack			
Total (m)	26,528.26	Drilled			

CEL Colorado V Drill Hole Processing Completed during Drill Camp #1, Phase #1 2022

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
CVDD-22-001	533.20	Complete	Complete	Complete	398
CVDD-22-002	575.00	Complete	Complete	Complete	412
CVDD-22-003	512.40	Complete	Complete	Complete	384
CVDD-22-004	658.95	Complete	Complete	Complete	478
CVDD-22-005	607.15	Complete	Complete	Complete	456
CVDD-22-006	600.70	Complete	Complete	Complete	427
CVDD-22-007	808.00	Complete	Complete	Complete	602
CVDD-22-008	535.70	Complete	Complete	Complete	306
CVDD-22-009	890.80	Complete	Complete	Complete	668
CVDD-22-010	890.20	Complete	Complete	Complete	645
CVDD-22-011	672.50	Complete	Complete	Complete	481
CVDD-22-012	756.70	Complete	Complete	Complete	556
CVDD-22-013	752.45	Complete	Complete	Complete	467
CVDD-22-014	863.40	Complete	Complete	Complete	642
CVDD-22-015	758.35	Complete	Complete	Complete	558
CVDD-22-016	558.45	Complete	Complete	Complete	380
CVDD-22-017	746.05	Complete	Complete	Complete	540
Logged (m)	11,720.00			Samples Submitted	8,400
Total (m)	11,720.00				

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 El Guayabo: CEL: For sampling, all core is cut using a diamond saw, longitudinally into two halves. One half is sampled for assa and the other retained for future reference. Where duplicate samples are taken, ½ core is cut using a diamo saw to prepare two ½ core duplicates. The location of the cut is marked on the core by the geologist that logged the core to ensure the cut creates representative sample. The sample preparation technique is appropriate for the material being sampled Historic: Core was cut with diamond saw and half core was taken All drilling was core drilling as such this is not relevant Sample preparation was appropriate and of good quality. Each 1-3 m sample of half core was dried, crushed nominal - 10 mesh (ca 2mm), then 250 g of chips were split out and pulverized. A sub-sample of the pulp was then sent for analysis for gold by standard fire assay on a 30 g charge with an atomic absorption finish with a nominal 5 ppb Au detection limit. Measures taken to ensure that the sampling is representative of the in-situ material collected is not outlined the historical documentation however a program of re-assaying was undertaken by Odin which demonstrate the repeatability of original assay results The use of a 1-3 m sample length is appropriate for deposits of finely disseminated mineralisation where lon mineralised intersections are to be expected. CEL ¼ core samples ya done by cutting the core with a diamond saw. Standards (CRM) and blanks were inserted into the batched sent for preparation and analysis. No duplicate samples. Celorado V: No information is available on the method/s that have been used to collect the soil samples. Selected intervals of drill core have been cut longitudinally using a diamond saw and ½ core has been sample Sample intervals range form 0.1m to 4.5m with an average length of 1.35m. The size of the samples is approp

ASX: CEL

www.challengerex.com

1,106.6m shares 10.0m options 60m perf shares 35m perf rights 1205 Hay Street

West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 El Guayabo: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 6 different CRM pulp samples have been submitted with the core samples. All 6 are certified for Au, 2 are certified for Ag, 5 are certified for Cu, 1 is certified for Fe and 3 are certified for Mo. For Au, of 222 CRM pulp analyses, 215 are within +/- 2 SD (97%) For Ag, of 54 CRM pulp analyses, 215 are within +/- 2 SD (99%) For Ku, of 126 CRM pulp analyses, 81 are within +/- 2 SD (99%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (99%) For Fe, of 65 CRM pulp analyses, 63 are within +/- 2 SD (97%) 118 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 16 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. 337 % core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate samples follow very closely the original analyses providing assurance

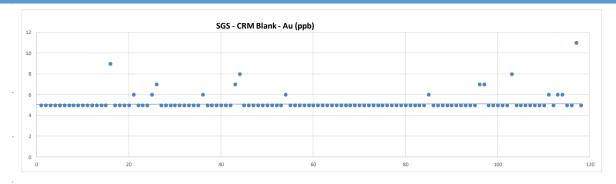
that the sample size and technique is appropriate.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary			
		565-CM01-Ac (gen)-man (/-20	SGS - CRN1 - Gg (N) - mass (/-130 	525 - CR43 - Ag(ppr) - man 1/- 20	500 - CR01 - Mic (NC) - must vf-250
			1		
			SGS-D1MH-Cu(%)-must/2 ZD	SGS -CRMM-Ag (greg) -max (/- SS)	SGC-0004-Me(N): mean (4-20)
		563- C006-Ardgen) - man 1/- 20 17 17 17 17 17 17 17 17 17 17	SG-CRMS-Gr(N)-HNAH (J-230		
			565-0007-Cs (%)-man (r. 20		505-0007-fe(b)-main (2 200


Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation

Commentary

CEL: Camp #1, Phase#2

- All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Subsamples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample.
- Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses.
- 7 different CRM pulp samples have been submitted with the core samples. All 7 are certified for Au, 3 are certified for Ag, All 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo.
- For Au, of 453 CRM pulp analyses, 445 are within +/- 2 SD (98%)
- For Ag, of 155 CRM pulp analyses, 150 are within +/- 2 SD (97%)
- For Cu, of 453 CRM pulp analyses, 444 are within +/- 2 SD (98%)
- For Mo, of 286 CRM pulp analyses, 272 are within +/- 2 SD (95%)
- For Fe, of 2 CRM pulp analyses, All are within +/- 2 SD (100%)
- 228 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 11 samples returned Au values of >5 ppb (up to 9 ppb) indicating only mild instrument calibration or contamination during fire assay.
- 671 ¼ core duplicate samples have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample analyses follow very closely the original analyses providing assurance that the sample size and technique is appropriate.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

	505-CH1-Cu(%)-man (/-20		505-0001-Mo(0-max 1/-20
SGS - CRM2 - Au (gpm) - mean +/-2SD	SG S- CRM2 - Gu (%) - mean +/- 250		565- CRM2- Mo(10 -mean 4/- 25D
SGS- 070M4 - Au (ppm) - mean 1/-250	SGS- 00M4 - Gu (%) - mean +/- 250	SGS - CR0M4- Ag (ppm) - me an +/- 250	SGS- CRM4- Mo(10 - mean +/-2SD
SGS - CRMS - A u (gpm) - me an 4/- 2 SD	SGS- OtM5- Gr (%)- mean +/-250	SGS - CRMS - Ag (ppm) - mu an i/- 2SD	
565- 00M6 - Au (ppm) - mean 4/-250	565 - CRM6 - Cu (%) - maan +/- 250		
565- CRM7 - Au (ppm) - mean +/- 250	565 - Cith/7 - Cu (%) - mean +/- 250		SGS -CRM7-Fe (%)- mean+/- 2SD
565 - CRMB - Au (ppm) - maan + /- 250	SGS - CRM8-Cu (%) - main 4/- 25 D	SGS - CRM8- Ag(ppm) - mean +/- 250	5 G5- GMM8 - Mo (%)- mean +/- 25D

Criteria

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

JORC Code explanation

Australian Registered Office Level 1

1205 Hay Street

Directors

Mr Brett Hackett, Non Exec Director

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman West Perth WA 6005 Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director

Commentary

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

1.106.6m shares 10.0m options 60m perf shares

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

50

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital

35m perf rights

SGS - CRM Blank - Au (ppb) 8 3 2

100

Historic:

Commentary

The nature, guality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin • are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate.

150

200

250

- Available historical data does not mention details of geophysical tools as such it is believed a geophysical ٠ campaign was not completed in parallel with the drilling campaign.
- Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also • inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a reassaying program of the majority of the higher-grade sections which confirmed the repeatability.
- ٠ Given the above, it is considered acceptable levels of accuracy and precision have been established
- CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis ٠ completed by in Lima at SGS del in Peru S.A.C and by ALS Laboratories in Quito with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g sub-sample was pulverized to 85% passing 75 µm. The technique provides for a near total analysis of the economic elements of interest.
- CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS • Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples.

JORC Code explanation

Criteria	JORC Code explanation	Commentary
		 Colorado V: CEL: Camp #1, Phase#1 All drill core collected by CEL has been crushed to a nominal 2mm size. A 500 g sub-sample has been pulverized to 85% passing 75 micron at the SGS Laboratory in Guayaquil. Sub-samples of the pulps have been analyzed by SGS for Au by Fire Assay (30g) with AAS determination and gravimetric determination where over limit. Sub-samples of the pulps are also assayed for a multi element suite by 4-acid digest with ICPMS determination (including Cu, Mo, Ag, Zn, Pb, S and Fe). All assay techniques are partial assays of the total sample. Samples submitted by CEL include standards (CRM), blanks and duplicate samples to provide some control (QAQC) on the accuracy and precision of the analyses. 8 different CRM pulp samples have been submitted with the core samples. All 8 are certified for Au, 3 are certified for Ag, 7 are certified for Cu, 1 is certified for Fe and 4 are certified for Mo. For Au, of 352 CRM pulp analyses, 346 are within +/- 2 SD (98%) For Cu, of 338 CRM pulp analyses, 127 are within +/- 2 SD (95%) For Mo, of 197 CRM pulp analyses, all are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (95%) For Fe, of 15 CRM pulp analyses, all are within +/- 2 SD (95%) 162 samples of pulp that are known to have a blank Au value have been included with the samples submitted. 24 samples returned Au values of >5 ppb (up to 11 ppb) indicating only mild instrument calibration or contamination during fire assay. 474 ¼ core duplicate sample have been submitted. The duplicate analyses for Au, Ag, Cu, Pb, Zn, As and Mo have been analysed. The duplicate sample show been submitted.

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

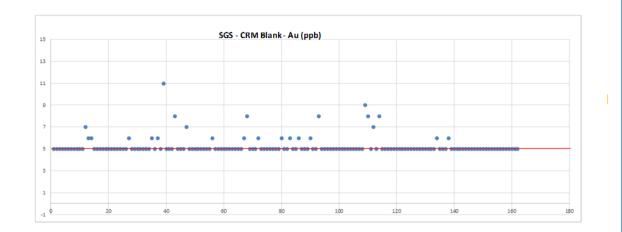
Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

riteria	JORC Code explanation	Commentary				
		SGL - CMAC - Ac (part) - mean 4, -120	SGC - CBM 1-Cr (%) - mean -4-280		555-00M2.Ma(%)-mean v/.300	
		355-CM01-Mulgent	JSS-CRUI-Sur(N)-mann (+ 250 1%	565-01M3-Agipani-man +5 550	563-CB43-MB (N)-mann/-3 B 10 10 10 10 10 10 10 10 10 10	
			555-CIM4-Cs (per-i - m ar-/- 350)	5021-02.00 - 24g typest-research/3.22		
		Sec. CLMS-Autyper: - mark (r)-210 Sec. CLMS-Autype	SSS-CR05-CR05-CR05-CR05-R040-V-SDO			
		S51: 21MC-kis (ppp): -mont of -110 ID ID <th co<="" td=""><td>555-604/2-52 (N) - man /- 255 10 10 10 10 10 10 10 10 10 10</td><td></td><td></td></th>	<td>555-604/2-52 (N) - man /- 255 10 10 10 10 10 10 10 10 10 10</td> <td></td> <td></td>	555-604/2-52 (N) - man /- 255 10 10 10 10 10 10 10 10 10 10		
		561 - CMAT - Au (parc) - mains (J - 280)	In SGS-CBM7-CL(N)-mean 4-300		565-CMT-fe(N)-mean-ol-265	
		SG2-CIMP-Au (pm)				

Issued Capital 1,106.6m shares 10.0m options 60m perf shares

. 35m perf rights Australian Registered Office Level 1

1205 Hay Street


West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

JORC Code explanation

Commentary

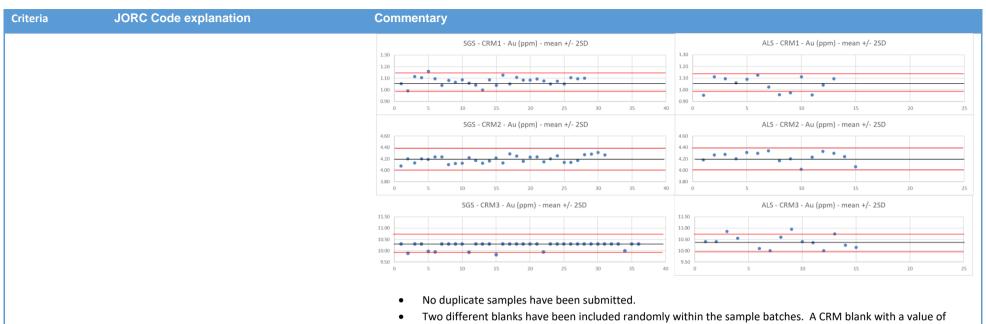
Historic:

• No information is available on the methods used to analyse the historic soil or drill core samples. Assay results are not provided in this report.

Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assaying is planned.

- Drill core was partially assayed for gold only with assays undertaken by Goldking's on site laboratory
- CEL samples of drill core re-sampled by CEL. Blanks and CRM (standards) were added to the batches to check sample preparation and analysis.

3 separate CRM's were included in the batches sent for analysis. All three have certified Au values. The results of the analysis of the CRM is shown below. With a few exceptions, the CRM has returned results within +/- 2 SD of the certified reference value. There is no bias in the results returned from either SGS or ALS laboratories. CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t).


Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Criteria

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact T: +61 8 6380 9235 E: admin@challengerex.com

Two different blanks have been included randomly within the sample batches. A CRM blank with a value of <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
		SGS - CRM Blank - Au (ppb) Image: Comparison of the comp
		000000000000000000000000000000000000
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 El Guayabo: CEL Drilling: Samples from significant intersections have not been checked by a second laboratory. No holes have been twinned. Data from logging and assaying is compiled into a database at the Project and is backed up in a secure location CEL GIS personnel and company geologists check and verify the data. No adjustments are made to any of the assay data. Historic: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many o the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PI format from the Laboratory and entered into a Project database for analysis. There has been no adjustment o the data. Colorado V: There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage.
enger Exploration Limited 23 591 382 :EL	Issued CapitalAustralian Register1,106.6m sharesLevel 110.0m options1205 Hay Street60m perf sharesWest Perth WA 600535m perf rights	Mr Kris Knauer, MD and CEOT: +61 8 6380 9235Mr Fletcher Quinn, ChairmanE: admin@challengerex.com

Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
		 Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no coordinates in the database. The remaining 4,152 have analyses for all 19 elements indicated above. Significant intersections have been internally checked against the assay data received. The data received has been archived electronically and a database of all drill information is being developed. There is no adjustment of the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 El Guayabo: CEL Drilling: Drill hole collars are surveyed after the drilling using a DGPS. The co-ordinate system used is PSAD 1956, UTM zone 17S. Down-hole surveys are performed at regular intervals down hole (nominally 50 metres or as required by the geologist) during the drilling of the hole to ensure the hole is on track to intersect planned targets. Down hole surveys are done using a magnetic compass and inclinometer tool fixed to the end of the wire line. Down hole surveys are recorded by the drillers and sent to the geologist and GIS team for checking and entry into the drill hole database.
		 Historic: Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a handheld GPS unit which is appropriate for the scale of the mapping program being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	 Drilling is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated Sample compositing was not used

Issued Capital

10.0m options

. 35m perf rights

1,106.6m shares

60m perf shares

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 A sampling bias is not evident. Drill pads are located in the best possible location to ensure there is no bias introduced, subject to the topography and existing infrastructure. The steep terrain and thick vegetation often dictates where is it possible to place a drill collar.
Sample security	 The measures taken to ensure sample security. 	 El Guayabo: CEL Samples: All CEL samples are held in a secure compound from the time they are received from the drillers to the time they are loaded onto a courier truck to be taken to the laboratory. The logging and sampling is done in a fenced and gated compound that has day and night security. Samples are sealed in bags and then packed in secure polyweave bags for transport
		 Historic: Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits.
		 GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Guayaquil for preparation. SGS in Guayaquil courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	 El Guayabo: CEL drilling: There has been no audit or review of the sampling techniques and data Historic: The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 25 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted in compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession has no historical sites, wilderness or national park issues. The concession has no historical sites, wilderness or national park issues. The concession has no historical sites, wilderness or national park issues.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria JC	ORC Code explanation	Commentary
		 was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness, or national park issues.
Exploration - done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The property has no historical sites, wilderness, or national park issues. El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed b in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gr anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guayabo 2: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying o small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays we conducted in a local laboratory in Ecuador with the majority of this work under
Geology -	Deposit type, geological setting and style of mineralisation.	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs as quartz diorite and dacite. Mineralisation has been recognized in: Steeply plunging breccia bodies (up to 200 m in diameter) associated with intrusive diorites emplaced in t metamorphic host rock. Porphyry style veins and stockwork as well as late Quartz/Calcite/sulfide veins and veinlets Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusions
Drill hole - Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	El Guayabo Historic drill hole information is provided below.
nger Exploration Limited 23 591 382 EL	Issued CapitalAustralian Registered Or1,106.6m sharesLevel 110.0m options1205 Hay Street60m perf sharesWest Perth WA 600535m perf rights	ffice Directors Contact Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Fletcher Quinn, Chairman E: admin@challengerex.com Mr Sergio Rotondo, Exec. Director Fini Althaus, Non Exec Director

information for all Material drill holes:	DRILLHOLE	EAST	NORTH	ELEVATION	AZIMU TH	DIP	FINAL	DRILLED
 easting and northing of the drill hole collar 	CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
	DDHGY01	628928.09	9605517.20	839.01	360	-90.0	249.20	Odin
\circ elevation or RL (Reduced Level – elevation	DDHGY 02	629171.15	9606025.55	983.16	360.0	-90.0	272.90	Odin
above sea level in metres) of the drill hole	DDHGY 03	629041.84	9606312.81	1063.37	305.0	-60.0	295.94	Odin
collar	DDHGY 04	629171.68	9606025.18	983.2	125.0	-60.0	172.21	Odin
$\circ ~~$ dip and azimuth of the hole	DDHGY 05	628509.21	9606405.29	989.87	145.0	-60.0	258.27	Odin
	DDHGY 06 DDHGY 07	629170.56 629170.81	9606025.97 9606025.80	983.11 983.16	305.0 305.0	-60.0 -75.0	101.94 127.00	Odin Odin
 down hole length and interception depth 	DDHGY 08	629170.81		989.86	145.0	-75.0	312.32	Odin
 hole length. 	DDHGY 09	629171.22	9606025.88	983.22	45.0	-75.0	166.25	Odin
 If the exclusion of this information is justified 	DDHGY 10	629170.77	9606025.24	983.12	225.0	-75.0	194.47	Odin
on the basis that the information is not	DDHGY 11	628507.97	9606405.33	989.83	160.0	-60.0	241.57	Odin
Material and this exclusion does not detract	DDHGY 12	629087.18	9606035.53	996.98	125.0	-60.0	255.7	Odin
	DDHGY 13	629242.46	9605975.42	997.292	320.0	-65.0	340.86	Odin
from the understanding of the report, the	DDHGY14	629242.27	9605975.64	997.285	320.0	-75.0	309.14	Odin
Competent Person should clearly explain why	DDHGY 15	629194.67	9605912.35	977.001	320.0	-60.0	251.07	Odin
this is the case.	DDHGY 16	629285.92		1036.920	320.0	-60.0	195.73	Odin
	DDHGY 17	629122.31	9606058.64	1021.053	125.0	-82.0	280.04	Odin
	DDHGY 18	628993.10	9606035.45	977.215	140.0	-60.0	160.35	Odin
	DDHGY 19	629087.23	9606034.98	997.332	45.0	-53.0	175.41	Odin
	DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
	CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEP THP	BY
	JDH01	627185.78	9606463.27		280.0	-60.0		Newmont
	JDH02	627260.37	9606353.12		280.0	-45.0	257.62	Newmont
	JDH03	627191.61	9606200.35		280.0	-45.0		Newmont
	JDH04	627429.81	9606324.00		280.0	-45.0	219.00	Newmont
	JDH05	627755.97	9606248.70		280.0	-45.0		Newmont
	JDH06 JDH07	628356.37 628356.37	9606416.13 9606416.13		150.0 150.0	-45.0 -75.0		Newmont Newmont
	JDH07	628356.37	9606416.13		150.0	-60.0		Newmont
	JDH09	628507.01	9606408.43		150.0	-45.0		Newmont
	JDH10	628897.96	9606813.62		270.0	-45.0		Newmont
	JDH11	628878.64	9606674.39		270.0	-45.0		Newmont
			9606765.31	993.45	150.0	-60.0		Newmont
	JDH12	029084.01						
	JDH12 JDH13	629684.61 629122.61	9606058.49		125.0	-60.0	239.33	Newmont

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

riteria	JORC Code explanation	Commenta	ry						
		Historic Color	ado V Drill Hole Infor	mation:					
		Hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhao
		ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zha
		ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zha
		ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zha
		ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zha
		ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zha
		ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zha
		ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zh
		ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zh
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zh
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zh
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zh
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zh
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zh
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zh
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zh
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zh
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zh
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zh
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zh
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zh
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zh
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zh
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zh
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zha
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zha

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhaojin
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhaojin
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhaojir
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhaojir
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhaoji
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zhaojir
		SAZKO-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zhaojii
		SAZKO-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zhaojii
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaoji
		СК2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaoji
		СК2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zhaoji
		СК2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhaoji
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		СК2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		CK3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zhaoji
		СКЗ-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zhaoji
		СКЗ-З	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zhaoji
		СК5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		СК5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK13-4	626604.0848	9608836.544	203.013	209	-45	176.57	Lee Mining
		CK13-5	626607.5245	9608832.296	203.013	136	-45	184.70	Lee Mining
		СК21-1	626693.536	9608691.062	204.927	41	00	143.47	Lee Mining

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Com	mentary							
		CEL: E	Guayabo	Project (Guayabo	Concession), Can	np #1, Phase #	1, Drill Hole I	nformatio	n	
		Hole I	-	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	Final depth	Driller
		GYDD	21-001	628893.56	9606473.61	1074.98	330	-60	800.46	CEL
			21-002	629648.12	9606889.41	913.03	330	-60	291.70	CEL
			21-002A	629648.91	9606888.00	913.71	330	-60	650.58	CEL
			21-003	628613.31	9606603.66	1031.61	149	-60	723.15	CEL
			21-003	628612.169	9606605.66	1031.91	330	-60	696.11	CEL
			21-005	628433.90	9606380.35	962.07	329	-60	632.05	CEL
			21-006	628435.80	9606380.46	962.58	100	-60	365.26	CEL
			21-007	628087.05	9606555.24	840.093	150	-60	651.80	CEL
			21-008	628435.62	9606377.74	962.24	150	-60	283.68	CEL
			21-009	628932.60	9606035.43	987.81	100	-60	692.67	CEL
			21-010	628088.44	9606552.79	839.92	180	-60	888.60	CEL
		GYDD	21-011	628987.88	9606169.64	1018.56	330	-60	314.46	CEL
			21-012	628844.64	9605438.73	870.24	129	-60	797.65	CEL
			21-013	628967.42	9605725.52	901.76	190	-60	517.45	CEL
			22-014	628741.17	9605761.53	955.53	100	-60	783.60	CEL
			22-015	628436.64	9606377.19	961.88	150	-72	368.26	CEL
		GYDD	22-016	628267.60	9606450.31	872.25	150	-62	469.75	CEL
		CEL: E	Guayabo	Project (Guayabo	Concession), Can	np #1, Phase #	2 Drill Hole II	nformatior	ı	
		Hole ID)	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
							(°)	(°)	•	
		GYDD-2	22-017	627096.13	9605850.15	885.89	225	-60	860.75	CEL
		GYDD-2	22-018	627408.50	9606259.17	961.10	150	-60	734.05	CEL
		GYDD-2	22-019	627018.22	9606591.53	860.80	075	-60	861.05	CEL
		GYDD-2	22-020	627410.33	9606261.79	961.50	225	-60	750.00	CEL
		GY2DD	-22-001	627271.92	9604368.13	496.50	100	-60	776.40	CEL
		GYDD-2	22-021	629039.50	9605861.33	893.20	330	-60	812.85	CEL
		GYDD-2	22-022	628988.58	9606167.81	1017.10	150	-60	702.85	CEL
		GYDD-2	22-023	629058.43	9606272.80	1045.70	150	-60	795.55	CEL
		GYDD-2	22-024	628971.40	9606104.67	1003.00	150	-60	650.00	CEL
		GYDD-2	22-025	629055.83	9606277.30	1045.50	330	-60	1194.05	CEL
		GYDD-2	22-026	628949.34	9606571.90	1062.60	345	-60	1082.45	CEL
		GYDD-2	22-027	628725.86	9606619.12	1047.88	150	-60	875.35	CEL
		GYDD-2	22-028	628488.59	9606449.24	961.82	150	-75	521.20	CEL
		GYDD-2	22-029	628391.57	9606502.21	904.05	150	-65	528.95	CEL
ger Exploration Lin 591 382	1,106.6m shares	Australian Registered Office Level 1		Knauer, MD and CEO	Contact T: +61 8 6380 9					
iL	10.0m options 60m perf shares 35m perf rights	1205 Hay Street West Perth WA 6005	Mr Serg Mr Pini	cher Quinn, Chairman gio Rotondo, Exec. Directo Althaus, Non Exec Direct t Hackett. Non Exec Direct	tor	llengerex.com				

Criteria	JORC Code explanation	Commentary							
		GYDD-22-030	628723.89	9606622.50	1047.60	330	-60	691.20	CEL
		GYDD-23-031	628552.90	9606591.85	988.40	150	-60	696.40	CEL
		GYDD-23-032	628669.96	9606599.34	1030.39	150	-60	781.45	CEL
		GYDD-23-033	628307.35	9606457.68	891.75	150	-70	565.85	CEL
		GYDD-23-034	628544.67	9606432.20	987.21	150	-70	413.65	CEL
		GYDD-23-035	628235.55	9606391.22	879.35	150	-60	381.85	CEL
		GYDD-23-036	628588.16	9606460.88	975.68	330	-70	767.45	CEL
		GYDD-23-037	628958.10	9605809.79	900.54	330	-60	823.10	CEL
		GYDD-23-038	628191.89	9606645.00	753.18	150	-55	651.80	CEL
		GYDD-23-039	628752.96	9605770.05	954.41	150	-60	812.40	CEL
		GYDD-23-040	628702.92	9606813.34	1040.18	150	-60	352.40	CEL
		GYDD-23-041	628788.051	9605899.887	955.430	150	-60	779.00	CEL
		GYDD-23-042	628960.507	9605803.955	898.063	150.4	-60	746.40	CEL
		GYFF-23-043	628544.251	9606848.974	898.569	150	-60	742.15	CEL
		CEL: El Guayabo F	Project (Colorado	V Concession), Ca	mp #1, Phase	e #1 Drill Hole	e Informat	tion	
		Hole ID	East (m)	North (m)	Elevation	Azimuth	Dip	Final depth	Driller
						(°)	(°)		
		CVDD-22-001	626891.522	9609246.373	199.393	300	-60	533.20	CEL
		CVDD-22-002	627198.352	9609719.449	198.970	300 120	-60 -60	575.00	CEL
		CVDD-22-002 CVDD-22-003	627198.352 626894.633	9609719.449 9609244.452	198.970 199.514	300 120 120	-60 -60 -60	575.00 512.40	CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004	627198.352 626894.633 627209.772	9609719.449 9609244.452 9609873.677	198.970 199.514 203.018	300 120 120 120	-60 -60 -60 -60	575.00 512.40 658.95	CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005	627198.352 626894.633 627209.772 626893.119	9609719.449 9609244.452 9609873.677 9609246.715	198.970 199.514 203.018 199.383	300 120 120 120 030	-60 -60 -60 -60 -65	575.00 512.40 658.95 607.15	CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006	627198.352 626894.633 627209.772 626893.119 627698.461	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275	198.970 199.514 203.018 199.383 180.879	300 120 120 120 030 300	-60 -60 -60 -60 -65 -60	575.00 512.40 658.95 607.15 600.70	CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874	198.970 199.514 203.018 199.383 180.879 264.563	300 120 120 120 030 300 120	-60 -60 -60 -65 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00	CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652	198.970 199.514 203.018 199.383 180.879 264.563 191.069	300 120 120 030 300 120 120	-60 -60 -60 -65 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70	CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594	300 120 120 030 300 120 120 120	-60 -60 -60 -65 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80	CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110	300 120 120 030 300 120 120 120 120 120	-60 -60 -60 -65 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20	CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815	300 120 120 030 300 120 120 120 120 120 300	-60 -60 -60 -65 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50	CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011 CVDD-22-012	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444 627329.632	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768 9607382.048	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815 524.050	300 120 120 030 300 120 120 120 120 120 300 315	-60 -60 -65 -60 -60 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50 756.70	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011 CVDD-22-012 CVDD-22-013	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444 627329.632 626906.497	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768 9607382.048 9609603.539	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815 524.050 174.956	300 120 120 030 300 120 120 120 120 120 300 315 120	-60 -60 -65 -60 -60 -60 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50 756.70 752.45	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011 CVDD-22-011 CVDD-22-013 CVDD-22-014	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444 627329.632 626906.497 627294.523	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768 9607382.048 9609603.539 9607344.459	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815 524.050 174.956 518.531	300 120 120 030 300 120 120 120 120 120 300 315 120 115	-60 -60 -65 -60 -60 -60 -60 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50 756.70 752.45 863.40	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011 CVDD-22-012 CVDD-22-013	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444 627329.632 626906.497	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768 9607382.048 9609603.539	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815 524.050 174.956	300 120 120 030 300 120 120 120 120 120 300 315 120	-60 -60 -65 -60 -60 -60 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50 756.70 752.45 863.40 758.35	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL
		CVDD-22-002 CVDD-22-003 CVDD-22-004 CVDD-22-005 CVDD-22-006 CVDD-22-007 CVDD-22-008 CVDD-22-009 CVDD-22-010 CVDD-22-011 CVDD-22-011 CVDD-22-013 CVDD-22-014	627198.352 626894.633 627209.772 626893.119 627698.461 626419.745 627444.177 626664.672 626436.552 628295.444 627329.632 626906.497 627294.523	9609719.449 9609244.452 9609873.677 9609246.715 9609900.275 9609344.874 9610249.652 9609635.445 9609542.080 9610306.768 9607382.048 9609603.539 9607344.459	198.970 199.514 203.018 199.383 180.879 264.563 191.069 179.594 244.110 156.815 524.050 174.956 518.531	300 120 120 030 300 120 120 120 120 120 300 315 120 115	-60 -60 -65 -60 -60 -60 -60 -60 -60 -60 -60 -60 -60	575.00 512.40 658.95 607.15 600.70 808.00 535.70 890.80 890.20 672.50 756.70 752.45 863.40	CEL CEL CEL CEL CEL CEL CEL CEL CEL CEL

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No grade cutting has been used to derive the weighted average grades reported. Minimum cut of grade of 0.2 g/t Au Equivalent (AuEq) was used for determining intercepts. Aggregate intercepts have been reported with higher grade inclusions to demonstrate the impact of aggregation. A bottom cut of 0.5 g/t Au Equivalent has been used to determine the higher-grade inclusions. Given the generally consistent nature of the mineralisation the impact of the aggregation of high-grade results and longer lengths of low-grade results does not have a large impact. For example, in the intercept of 156m @ 2.6 g.t Au in hole GGY-02: over half of the intercept comprises gold grades in excess of 1 g/t Au only 20% of the intercept includes grades between 0.2 and 0.5 g/t Au over one third includes gold grades in excess of 2 g/t Au. Au Eq assumes a gold price of USD 1,780/oz, a silver price of USD 22 /oz, a copper price of USD 9,650 /t, and a Molybdenum price of US\$40,500/t Metallurgical recovery factors for gold, silver, copper, and Molybdenum are assumed to be equal. No metallurgical factors have been applied in calculating the AuEq at this early stage of the Project, hence the formula for calculating the Au Eq is: Au (g/t) + (Ag (g/t) x 22/1780) + (1.68604 x Cu (%) + (7.07612 x Mo (%))). CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold
		Guayabo: A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

riteria	JORC Code explanation	Comn	nenta	ry									
		Significa	ant Hi	storic	interse	ections fr	om El Gua	avabo d	drilling are shown	below:			
		Drillhole		Minerali			Gold	Ag	Cu		Azimuth	Incl	TD
		(#)		From	То	(m)	(g/t)	(g/t)		(g/t)	(deg)	(deg)	(m)
		JDH-001	from	183	190.6		0.3 g/tA		not assayed	n/a	280	-60	236.9
													-
		JDH-002	from	7.6	152.9		0.4 g/tA		not assayed	n/a	280	-45	257.5
			and	199	243		0.4 g/tA		not assayed	n/a			
		JDH-003	from	35.95	71.6		0.5 g/tA		not assayed	n/a	280	-45	261
			and	120.4			0.4 g/tA		not assayed	n/a			
			inc	146.81	224.08		0.5 g/tA		not assayed	n/a			
		JDH-004	from	3.96	21.95		0.4 g/tA		not assayed	n/a	280	-45	219
			and	79.74	120.42		0.4 g/tA		not assayed	n/a			
			and	150.9	203.7	52.8 m @	0.7 g/tA	u +	not assayed	n/a			
		JDH-005	from	5.2	81.4		0.4 g/tA		not assayed	n/a	280	-45	210.4
			and	169.7	208.5	38.8 m @	0.2 g/tA	u +	not assayed	n/a			
		JDH-006	from	17.99	89.6	71.6 m @	0.2 g/tA	u + 2.0	g/tAg + 0.10 % Cu	0.42	150	-45	302.7
			and	164.8	281				g/tAg + 0.40 % Cu				
			inc	227.8	281.09	53.3 m @	1.2 g/tA	u + 13.2	g/t Ag + 0.62 % Cu	2.39			
		JDH-007	from	39.7	84.45	44.8 m @	0.3 g/tA	u + 1.4	g/t Ag + 0.04 % Cu	0.38	150	-75	105.8
		JDH-008	from	104.7	136.7	32.0 m @	0.1 q/tA	u + 3.6	g/t Ag + 0.13 % Cu	0.41	150	-60	352.7
			and	249.08	316.15				g/t Ag + 0.21 % Cu				
			and	291.76	316.15	24.4 m @	0.5 g/tA	u + 9.2	g/t Ag + 0.34 % Cu	1.13			
		JDH-009	from	10.3	122.03	111.7 m @	0.7 g/tA	u + 14.6	g/tAg + 0.58 % Cu	1.85	150	-45	256.7
			inc	34.6	91.54				g/tAg + 0.82 % Cu				
			and	201.4	205.4				g/t Ag + 0.01 % Cu				
			and	255.1	eoh	1.5 m @	0.7 g/tA	u + 1.5	g/t Ag + 0.02 % Cu	0.75			
		JDH-10	from	1.5	50.9				g/t Ag + 0.09 % Cu		270	-45	221.6
			and	90.54	119	-			g/tAg + 0.10 % Cu				
			and	140	203		-		g/t Ag + 0.07 % Cu				
		JDH-011	from	100.7	218				g/tAg + 0.10 % Cu		270	-45	218.0
		JDH-012	from	12.2	53.96		-		g/t Ag + 0.02 % Cu		150	-60	124.1
													_
		JDH-013	from	53.35	69.6		-		g/t Ag + 0.01 % Cu		150	-60	239.3
			and	89.9	154.9		-		g/t Ag + 0.06 % Cu				
			inc		142.76				g/t Ag + 0.10 % Cu				
		JDH-014	from	26.96	75.69				g/t Ag + 0.10 % Cu		90	-60	239.4
			and	85.84	116.32		-		g/t Ag + 0.1 % Cu				
			and	128.52	175.3		-		g/t Ag + 0.08 % Cu				
			and	179.35	217.98	38.6 m @	0.1 g/tA	u + 2.5	g/t Ag + 0.08 % Cu	0.26			

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commenta								
		<u> </u>	tersections from Historic	and Re-as	sayed dril					
		Drill hole		_	_	Total	Au	Ag	Cu	Au Ec
		(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
		GY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
			(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	1	(36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	((31.0m	0.21	0.13	0.03	0.3
		GY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
			(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
			(original assays)	1	'	62.0m	4.83	19.96	0.23	5.5
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
			(original assays)	('	57.0m	1.24	3.53	0.17	1.6
		GY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
			(original assays)	('	50.0m	0.51	21.74	0.44	1.5
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
			(original assays)	'	'	34.0m	0.84	6.22	0.16	1.2
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
			(original assays)	('	30.0m	0.07	6.18	0.31	0.7
		GY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
			(original assays)	'	'	112.0m	0.18	11.73	0.36	0.9
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
			(original assays)	1	(40.0m	0.09	4.90	0.22	0.5
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
			(original assays)	'	'	13.0m	0.34	19.48	0.96	2.2
		GY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
			(original assays)	'	(35.0m	0.30	4.01	0.03	0.4
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
			(original assays)	(,	52.0m	0.26	1.42	0.06	0.4
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
			(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commenta	ry							
			(original assays)	1	'	71.0m	0.20	1.59	0.07	0.3
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	('	130.5m	0.42	8.02	0.36	1.1
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0
			(original assays)	1	'	101.1m	0.22	15.08	0.59	1.4
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6
			(original assays)	1	'	35.7m	0.41	2.96	0.10	0.6
			historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5
			(original assays)	1	'	52.9m	0.39	1.24	0.06	0.5
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8
			(original assays)	1	'	35.7m	0.69	7.36	0.02	0.8
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2
			(original assays)	('	42.7m	2.00	3.70	0.08	2.2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9
			(original assays)	1	'	34.5m	0.52	6.25	0.13	0.8
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4
			(original assays)	1	'	26.5m	0.65	2.91	0.08	0.8

Colorado V:

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commenta								
									ng of available	
		Hole_id	From	То	Interval	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)	Comment
			(m)	(m)	(m)					
		ZK0-1	9.4	37.5	28.1	0.4	1.0			
		and	66.5	89.5	23.0	0.9	4.7			
		and	105.7	129.7	24.0	0.3	1.0			
		and	167.5	214.0	46.5	0.4	7.1			
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			
		inc	253.0	340.0	87.0	2.1	1.9			
		ZK0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Mr Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Mr Fletcher Quinn, Chairman
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Director
 Mr Brit Althaus, Non Exec Director

 Mr Brit Hackett, Non Exec Director
 Second Seco

Criteria	JORC Code explanation	Commenta	ary							
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	-
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in
										mineralisation
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Mr Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Mr Fletcher Quinn, Chairman
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Director
 Mr Brit Althaus, Non Exec Director

 Mr Brit Hackett, Non Exec Director
 Second Seco

Criteria JORC Code explanation

Commentary

	·							
and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	
inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off
inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off

* Mineralisation to end of hole

Historic: Significant intersections from Colorado V channel sample results from underground exposure

Channel_id	From (m)	Interval	AuEq (g/t)	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		(m)						
Main Adit	0.0	264.0	0.42	0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off
inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
Main Adit	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
(west drive)								
and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut off
inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off

CEL: Guayabo and Colorado V Concessions_Camp 1, Phase #1 & Phase #2 Drilling Intercepts:

A cut-off grade of 0.1 g/t Au was used to report the assays of core samples with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated (e.g. 0.2g/t Au Eq, 0.5g/t AuEq, 1.0g/t AuEq, 10.0g/t AuEq).

CEL: Significant intersections from El Guayabo Project (Guayabo Concession)_Camp #1, Phase #1 Drilling completed

Drill Hole (#)	From (m)	То (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	AuEq (g/t)	Comments	Total intercept (gram metres)
GYDD- 21-001	16.2	800.5	784.3	0.2	1.6	0.1	12.0	0.4	0.1 g/t cut-off	282.4
inc	167.5	548.0	380.5	0.3	2.0	0.1	18.4	0.5	1.0 g/t cut-off	178.8
inc	359.5	548.0	188.5	0.4	2.4	0.1	29.5	0.6	1.0 g/t cut-off	115.0
inc	403.0	431.0	28.0	0.5	6.9	0.2	104.4	1.0	1.0 g/t cut-off	26.6
inc	403.0	424.0	21.0	0.8	3.0	0.2	138.9	1.1	1.0 g/t cut-off	22.9
and	468.5	498.5	30.0	0.8	2.6	0.2	24.8	1.1	1.0 g/t cut-off	31.8
GYDD- 21-002	85	131.5	46.5	0.32	3.99	0.04	5.72	0.4	0.1 g/t cut-off	20.0

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

 Directors
 Contact

 Mr Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Mr Fletcher Quinn, Chairman
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Director
 Mr Pini Althaus, Non Exec Director

 Mr Brett Hackett, Non Exec Director
 K

Criteria	JORC Code explanation	Comme	ntary									
		incl.	112	114.3	2.3	1.33	33.17	0.12	5.1	2.0	1.0 g/t cut-off	4.5
		incl.	129.75	131.5	1.75	2.05	7.36	0.01	1.29	2.2	1.0 g/t cut-off	3.8
		and	279.45	306.5	27.05	1.49	0.82	0.02	2.21	1.5	0.1 g/t cut-off	41.4
		incl.	305	306.5	1.5	19.16	1.89	0.03	3.21	19.2	10.0 g/t cut-	
		inci.									off	28.8
		and	378.5	392	13.5	0.44	0.21	0.01	1.45	0.5	0.1 g/t cut-off	6.2
		and	447.9	448.8	0.9	0.74	4.85	0.06	1.92	0.9	0.1 g/t cut-off	0.8
		and	499.8	557.8	58	0.14	0.3	0.01	1.53	0.2	0.1 g/t cut-off	9.3
		incl.	547.8	554.8	7	0.39	0.21	0.01	1.74	0.4	0.5 g/t cut-off	2.9
		incl.	554.1	554.8	0.7	1.06	0.2	0.01	1.08	1.1	1.0 g/t cut-off	0.8
		GYDD-									0.1 g/t cut-off	
		21-003	71.85	191.06	119.2	0.4	0.8	0.0	2.2	0.5		53.9
		inc	76.35	153.56	77.2	0.5	0.5	0.0	1.1	0.6	1.0 g/t cut-off	45.6
		inc	76.35	102.56	26.2	1.1	0.9	0.0	1.7	1.1	1.0 g/t cut-off	29.3
		inc	101.80	102.56	0.8	20.6	4.9	0.0	0.6	20.7	10.0 g/t cut	15.7
		and	356.50	371.50	15.0	0.3	0.4	0.0	5.0	0.4	0.1 g/t cut-off	5.3
		inc	361.00	362.50	1.5	1.0	0.5	0.0	3.9	1.1	1.0 g/t cut-off	1.6
		and	575.80	597.20	21.4	0.1	2.6	0.1	57.7	0.3	0.1 g/t cut-off	6.7
		and	662.20	723.15	61.0	0.1	0.9	0.0	24.5	0.2	0.1 g/t cut-off	12.3
		GYDD-	27.40	275 75			1.0		6.5		0.1 g/t cut-off	
		21-004	37.10	375.75 375.75	338.7 152.3	0.2 0.2	1.0 1.3	0.0 0.0	6.5 7.3	0.3	0.1 alt out off	84.7 50.0
		inc	223.46 348.75		27.0	0.2	1.3 1.8	0.0	7.3	0.3	0.1 g/t cut-off	
		inc		375.75			1.8 0.6	0.0	7.3 18.7	<mark>0.6</mark> 0.3	1.0 g/t cut-off 0.1 g/t cut-off	16.9
		and	613.50	646.50 646.50	33.0 7.5	0.2 0.5	0.6	0.1	18.7	0.3	-	8.6 4.1
		inc	639.00	040.50	7.5	0.5	0.5	0.0	10.7	0.5	1.0 g/t cut-off	4.1
		GYDD- 21-005	16.10	597.75	581.7	0.3	0.9	0.0	2.5	0.3	0.1 g/t cut-off	194.3
		inc	389.80	478.15	88.4	0.6	1.8	0.1	1.5	0.8	1.0 g/t cut-off	66.7
		inc	476.50	478.15	1.7	25.1	1.8	0.0	4.0	25.2	10.0 g/t cut	41.5
		and	567.34	597.75	30.4	1.4	0.9	0.0	5.1	1.5	1.0 g/t cut-off	45.6
		inc	592.59	597.75	5.2	7.1	2.0	0.0	3.9	7.2	1.0 g/t cut-off	36.9
		inc	596.15	597.15	1.0	22.0	3.9	0.0	10.9	22.2	10 g/t cut-off	22.2
		GYDD-										
		21-006	3.30	313.10	309.8	0.2	6.3	0.2	3.0	0.7	0.1 g/t cut-off	207.1
		inc	17.40	276.50	259.1	0.2	7.3	0.2	3.3	0.8	0.1 g/t cut-off based on	195.9
		inc	74.40	276.50	202.1	0.3	6.5	0.3	3.6	0.8	lithology	165.7
		inc	74.40	107.40	33.0	0.3	15.5	0.5	3.0	1.3	1.0 g/t cut-off	43.4
		and	231.90	285.50	53.0 53.6	0.3	8.8	0.5	5.7 1.1	1.5	1.0 g/t cut-off	43.4 81.7
		anu	231.90	205.50	55.0	0.7	0.0	0.4	1.1	1.5	1.0 g/1 cut-011	01./

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Mr Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Mr Fletcher Quinn, Chairman
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Director
 Mr Brit Althaus, Non Exec Director

 Mr Brit Hackett, Non Exec Director
 Second Seco

Criteria	JORC Code explanation	Commer	ntary									
		GYDD- 21-007	85.30	94.00	8.7	0.4	3.6	0.1	4.6	0.6	1.0 g/t cut-off	5.5
		and	149.50	509.60	360.1	0.1	0.9	0.1	9.6	0.3	0.2 g/t cut off	95.1
		inc	253.50	265.50	12.0	0.4	2.0	0.1	10.3	0.5	1.0 g/t cut-off	6.1
		and	309.50	316.70	7.2	0.4	2.6	0.2	16.6	0.8	0.5 g/t cut-off	5.7
		and	450.20	493.20	43.0	0.4	1.0	0.1	21.3	0.6	0.5 g/t cut-off	24.1
		and	628.77	651.80	23.0	0.1	0.7	0.4	5.5	0.2	0.2 g/t cut-off	4.6
		inc	649.25	651.80	2.6	0.6	2.4	0.1	2.1	0.8	EOH	1.9
		GYDD- 21-008	5.30	263.10	257.8	0.8	7.9	0.3	1.5	1.4	0.1 g/t cut-off	361.0
		inc	184.10	263.10	79.0	2.4	17.5	0.7	1.6	3.8	1.0 g/t cut-off	298.6
		inc	209.40	263.10	53.7	3.5	23.9	0.9	1.7	5.3	5.0 g/t cut-off	285.7
		inc	248.80	255.60	6.8	16.9	50.1	1.9	1.6	20.6	10 g/t cut-off	104.2
		GYDD- 21-009	0.00	692.70	692.7	0.2	2.0	0.1	7.7	0.3	EOH	191.9
		inc	220.50	441.00	220.5	0.3	4.3	0.1	8.7	0.6	0.5 g/t cut-off	128.3
		inc	282.80	303.50	20.7	0.3	16.5	0.3	5.5	1.0	0.5 g/t cut-off	20.5
		inc	359.00	439.50	80.5	0.5	1.3	0.2	5.8	0.9	1.0 g/t cut-off	68.8
		inc	359.00	371.00	12.0	1.4	3.1	0.2	6.3	1.7	1.0 g/t cut-off	20.1
		and	398.00	439.50	41.5	0.5	7.2	0.2	5.7	1.0	1.0 g/t cut-off	41.0
		inc	421.20	439.50	18.3	0.9	14.4	0.5	5.3	1.8	1.0 g/t cut-off	33.4
		GYDD- 21-010	70.20	880.10	809.9	0.2	1.1	0.1	11.9	0.3	0.2 g/t cut-off	227.6
		inc	124.10	536.30	412.1	0.2	1.2	0.1	14.0	0.4	0.2 g/t cut-off	153.7
		inc	318.70	536.30	217.6	0.3	1.6	0.1	19.9	0.5	0.5 g/t cut-off	102.9
		inc	319.70	358.40	38.7	0.5	1.8	0.1	8.4	0.7	1.0 g/t cut-off	28.6
		and	468.10	536.30	68.2	0.4	2.2	0.1	31.8	0.7	1.0 g/t cut-off	45.4
		and	581.60	880.10	298.5	0.1	1.0	0.0	10.3	0.2	0.2 g/t cut-off	61.8
		inc	650.00	660.50	10.5	0.5	3.3	0.1	16.9	0.7	1.0 g/t cut-off	6.9
		GYDD- 21-011	3.00	310.90	307.9	0.5	2.4	0.0	13.6	0.6	0.2 g/t cut-off	191.5
		inc	13.00	21.00	8.0	0.7	12.4	0.1	2.0	0.9	0.5 g/t cut-off	7.3
		and	156.05	258.90	102.9	1.1	2.7	0.0	19.1	1.2	0.5 g/t cut-off	122.7
		inc	156.05	213.05	57.0	1.7	3.6	0.0	9.0	1.8	1.0 g/t cut-off	104.3
		GYDD- 21-012	2.00	226.84	224.8	0.3	2.4	0.0	2.7	0.4	0.2 g/t cut-off	83.6
		inc	2.00	44.50	42.5	0.6	2.3	0.0	1.9	0.7	1.0 g/t cut-off	31.1
		inc	2.00	6.50	4.5	1.8	0.8	0.0	1.8	1.9	1.0 g/t cut-off	8.4
		and	31.00	38.50	7.5	0.9	6.5	0.0	1.8	1.1	1.0 g/t cut-off	8.1
		and	339.94	365.60	25.7	0.1	2.2	0.0	2.3	0.2	0.2 g/t cut-off	4.6

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

teria	JORC Code explanation	Commer	ntary									
		and	464.20	491.90	27.7	0.1	2.6	0.0	2.6	0.2	0.2 g/t cut-off	6.4
		and	669.60	741.60	72.0	0.3	0.8	0.0	3.2	0.3	0.2 g/t cut-off	23.1
		inc	677.10	732.60	55.5	0.3	0.7	0.0	3.6	0.4	1.0 g/t cut-off	20.4
		GYDD- 21-013	33.60	164.50	130.9	0.2	4.2	0.1	5.7	0.4	0.2 g/t cut-off	51.4
		inc	33.60	95.75	62.2	0.3	5.2	0.1	8.5	0.5	1.0 g/t cut-off	32.4
		inc	61.25	74.75	13.5	0.8	8.3	0.1	6.0	1.0	1.0 g/t cut-off	13.8
		and	189.15	517.45	328.3	0.2	2.2	0.1	23.3	0.4	EOH	114.9
		inc	341.04	432.00	91.0	0.4	1.7	0.1	32.3	0.6	0.5 g/t cut-off	55.3
		inc	341.04	350.00	9.0	0.9	1.7	0.0	7.9	1.0	1.0 g/t cut-off	8.9
		and	412.14	430.14	18.0	0.7	2.2	0.1	35.7	0.9	1.0 g/t cut-off	17.0
		GYDD-										
		22-014	15.30	609.80	594.50	0.16	2.22	0.05	7.34	0.28	0.1 g/t cut off	164.7
		inc	538.50	609.80	71.30	0.50	2.67	0.07	14.28	0.66	1.0 g/t cut off	46.9
		inc	556.50	584.30	27.80	1.14	4.43	0.12	27.61	1.43	1.0 g/t cut off	39.6
		GYDD-										
		22-015	3.00	308.70	305.70	0.15	4.65	0.15	1.54	0.46	0.1 g/t cut off	141.7
		incl.	87.10	146.90	59.80	0.19	7.06	0.25	1.48	0.69	1.0 g/t cut off	41.2
		and	257.65	304.90	47.25	0.38	6.74	0.25	1.30	0.89	1.0 g/t cut off	42.1
		inc	257.65	275.65	18.00	0.40	9.81	0.35	1.37	1.11	1.0 g/t cut off	20.0
		and	289.90	304.90	15.00	0.57	7.73	0.31	1.20	1.19	1.0 g/t cut off	17.8
		GYDD-	60.00	222.42		0.00	2.00	0.00	2.02	0.47	0.4 /1 1 55	400 5
		22-016	68.00	333.42	265.42	0.29	2.90	0.08	2.93	0.47	0.1 g/t cut off	123.5
		inc	225.80	333.42	107.62	0.51	5.65	0.16	2.09	0.86	1.0 g/t cut off	92.0
		inc	294.30	333.42	39.12	0.61	8.45	0.25	1.86	1.13	1.0 g/t cut off	33.9
		and	225.80	256.80	31.00	0.73	6.10	0.17	2.05	1.09	1.0 g/t cut off	44.1
		-	ficant inter	sections fr	om El Guay	abo Proj	ect (Guay	abo Conce	ession)_Ca	amp #1,	Phase #2 Drilling com	
		Drill	_	_								Tot
		Hole	From	То	Interval	Gold	Ag	Cu	Мо	AuEq	Comments	intero (gra
		(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		metr
		GYDD- 22-017	8.00	110.12	102.12	0.22	1.13	0.01	1.30	0.26	0.1 g/t AuEq cut off	26.
		incl.	8.00	70.40	62.40	0.30	1.57	0.02	1.30	0.36	0.1 g/t AuEq cut off	22.3
		incl.	9.50	24.50	15.00	0.71	3.65	0.04	2.43	0.82	1.0 g/t AuEq cut off	12.4
		and	153.96	172.03	18.07	0.47	2.63	0.02	1.82	0.53	1.0 g/t AuEq cut off	9.6
		and	380.75	382.75	2.00	1.21	0.46	0.02	1.30	1.25	1.0 g/t AuEq cut off	2.5
		and	406.06	443.82	37.76	0.25	0.54	0.02	1.26	0.29	1.0 g/t AuEq cut off	10.9

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		and	521.25	686.65	165.40	0.21	0.73	0.04	2.85	0.28	0.1 g/t AuEq cut off	45.7
		incl.	544.50	552.00	7.50	0.43	1.26	0.54	1.61	0.54	0.5 g/t AuEq cut off	4.0
		and	591.00	621.25	30.25	0.45	0.86	0.03	1.22	0.52	0.5 g/t AuEq cut off	15.6
		and	644.65	652.15	7.50	0.49	1.43	0.10	1.87	0.68	0.5 g/t AuEq cut off	5.1
		and	667.15	668.65	1.50	1.18	0.41	0.01	0.70	1.21	1.0 g/t AuEq cut off	1.8
		and	818.50	821.00	2.50	0.43	2.84	0.91	0.58	0.62	0.5 g/t AuEq cut off	1.5
		GYDD-	4.00	734.05	730.05	0.14	0.67	0.03	5.85	0.21	0.1 g/t AuEq cut off	151.3
		22-018										
		incl.	4.00	315.71	311.71	0.20	0.73	0.03	7.37	0.25	0.1 g/t AuEq cut off	79.0
		incl.	4.00	60.00	56.00	0.53	0.66	0.02	5.67	0.57	1.0 g/t AuEq cut off	31.8
		incl.	32.00	60.00	28.00	0.82	0.78	0.02	5.83	0.86	1.0 g/t AuEq cut off	24.1
		and	129.00	130.50	1.50	1.96	0.26	0.01	2.50	1.98	1.0 g/t AuEq cut off	3.0
		and	177.30	178.80	1.50	1.12	1.11	0.05	5.60	1.20	1.0 g/t AuEq cut off	1.8
		and	243.30	244.80	1.50	1.05	1.28	0.04	4.50	1.13	1.0 g/t AuEq cut off	1.7
		and	383.25	388.65	5.40	0.14	1.45	0.09	3.20	0.32	0.1 g/t AuEq cut off	1.7
		and	423.15	434.40	11.25	0.24	0.84	0.03	6.58	0.31	0.1 g/t AuEq cut off	3.5
		and	583.90	626.50	42.60	0.44	0.95	0.06	5.43	0.55	1.0 g/t AuEq cut off	23.3
		and	698.30	701.30	3.00	0.51	0.54	0.04	1.68	0.59	0.5 g/t AuEq cut off	1.8
		GYDD- 22-019	77.30	855.50	778.20	0.23	0.58	0.01	0.79	0.26	0.1 g/t AuEq cut off	202.3
		incl.	77.30	92.10	14.80	0.30	3.75	0.02	3.30	0.38	0.1 g/t AuEq cut off	5.6
		and	292.30	570.00	277.70	0.33	0.75	0.01	2.59	0.36	0.1 g/t AuEq cut off	100.0
		incl.	328.13	499.47	171.34	0.46	0.89	0.01	2.13	0.49	1.0 g/t AuEq cut off	84.0
		incl.	328.13	426.50	98.37	0.63	0.64	0.01	2.34	0.66	1.0 g/t AuEq cut off	64.7
		incl.	328.13	334.92	6.79	1.87	4.70	0.07	1.28	2.05	1.0 g/t AuEq cut off	13.9
		and	384.47	426.50	42.03	0.85	0.36	0.01	3.08	0.87	1.0 g/t AuEq cut off	36.6
		incl.	384.47	408.50	24.03	1.30	0.46	0.02	3.54	1.34	1.0 g/t AuEq cut off	32.1
		and	463.50	465.00	1.50	1.51	4.49	0.02	1.90	1.60	1.0 g/t AuEq cut off	2.4
		and	497.04	499.47	2.43	3.13	24.21	0.16	2.51	3.70	1.0 g/t AuEq cut off	9.0
		and	538.50	540.00	1.50	2.13	5.89	0.13	2.30	2.42	1.0 g/t AuEq cut off	3.6
		and	688.20	855.50	167.30	0.40	0.53	0.02	3.67	0.45	0.5 g/t AuEq cut off	74.4
		incl.	688.20	839.00	150.80	0.43	0.56	0.02	3.09	0.48	0.5g/t AuEq cut off	71.8
		incl.	796.50	839.00	42.50	1.31	1.20	0.05	2.35	1.42	1.0 g/t AuEq cut off	60.4
		incl.	796.50	819.00	22.50	2.26	1.94	0.08	2.36	2.42	1.0 g/t AuEq cut off	54.5
		GYDD- 22-020	0.00	12.00	12.00	0.31	0.53	0.02	4.55	0.35	0.1 g/t AuEq cut off	4.2
		and	69.72	75.72	6.00	0.69	0.69	0.02	3.47	0.74	1.0 g/t AuEq cut off	4.4
		and	95.17	242.80	147.63	0.18	1.02	0.02	5.45	0.23	0.5g/t AuEq cut off	33.4
		incl.	119.17	200.79	81.62	0.20	1.09	0.03	6.24	0.26	1.0 g/t AuEq cut off	21.0
		and	290.50	445.50	155.00	0.13	1.70	0.05	3.65	0.24	0.1 g/t AuEq cut off	37.4

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005
 Directors
 Contact

 Mr Kris Knauer, MD and CEO
 T: +61 8 6380 9235

 Mr Fletcher Quinn, Chairman
 E: admin@challengerex.com

 Mr Sergio Rotondo, Exec. Director
 Mr Brit Althaus, Non Exec Director

 Mr Brit Hackett, Non Exec Director
 Second Seco

Criteria	JORC Code explanation	Commen	tary									
		incl.	292.00	299.50	7.50	0.46	3.75	0.16	4.06	0.78	0.5g/t AuEq cut off	5.9
		and	385.00	433.50	48.50	0.19	2.59	0.08	4.59	0.35	0.1g/t AuEq cut off	16.9
		incl.	385.00	409.50	24.50	0.22	2.83	0.08	5.55	0.39	0.5g/t AuEq cut off	9.5
		and	623.50	750.00	126.50	0.28	0.98	0.04	5.73	0.37	0.1g/t AuEq cut off	47.2
		incl.	635.50	661.00	25.50	0.75	1.81	0.09	2.88	0.92	0.5g/t AuEq cut off	23.5
		incl.	637.00	652.00	15.00	1.03	2.24	0.12	3.54	1.27	1.0 g/t AuEq cut off	19.0
		incl.	729.00	731.00	2.00	0.94	1.24	0.08	3.50	1.10	1.0 g/t AuEq cut off	2.2
		GYDD- 22-021	5.20	646.00	640.80	0.11	1.88	0.06	9.45	0.25	0.1g/t AuEq cut off	158.3
		incl.	56.13	339.70	283.57	0.14	2.04	0.07	6.22	0.29	0.5g/t AuEq cut off	83.2
		incl.	56.13	129.30	73.17	0.19	2.14	0.09	8.30	0.38	0.5g/t AuEq cut off	27.4
		and	703.00	760.00	57.00	0.11	0.96	0.04	14.35	0.20	0.1g/t AuEq cut off	11.4
		GYDD- 22-022	0.00	702.85	702.85	0.16	2.75	0.05	6.65	0.29	0.1g/t AuEq cut off	204.4
		incl.	23.90	52.00	28.10	0.18	30.43	0.04	1.44	0.63	1.0 g/t AuEq cut off	17.6
		and	278.20	395.80	117.60	0.22	3.16	0.09	5.67	0.42	0.1 g/t AuEq cut off	49.7
		incl.	292.40	307.75	15.35	0.43	4.27	0.09	5.95	0.65	0.5g/t AuEq cut off	9.9
		incl.	352.00	365.70	13.70	0.29	4.60	0.16	3.29	0.62	0.5g/t AuEq cut off	8.5
		incl.	378.18	385.30	7.12	0.59	2.50	0.11	8.98	0.82	0.5g/t AuEq cut off	5.8
		and	446.50	523.60	77.10	0.42	2.74	0.12	5.68	0.67	1.0 g/t AuEq cut off	51.3
		incl.	446.50	450.53	4.03	2.14	5.01	0.19	7.16	2.52	1.0 g/t AuEq cut off	10.2
		and	492.20	520.60	28.40	0.63	3.59	0.18	9.96	0.99	1.0 g/t AuEq cut off	28.0
		GYDD- 22-023	15.50	795.55	780.05	0.18	2.07	0.04	6.36	0.31	0.1 g/t AuEq cut off	240.0
		incl.	15.50	305.70	290.20	0.34	2.70	0.04	5.11	0.45	0.1 g/t AuEq cut off	130.9
		incl.	35.00	44.00	9.00	0.95	1.20	0.03	0.76	1.02	1.0 g/t AuEq cut off	9.2
		incl.	144.70	161.20	16.50	0.73	3.21	0.06	7.09	0.87	1.0 g/t AuEq cut off	14.4
		and	195.30	196.80	1.50	0.79	56.00	0.03	1.80	1.53	1.0 g/t AuEq cut off	2.3
		and	222.80	277.00	54.20	0.73	4.72	0.07	10.75	0.91	0.5g/t AuEq cut off	49.5
		incl.	224.30	252.70	28.40	1.05	3.45	0.05	7.54	1.17	1.0 g/t AuEq cut off	33.3
		and	441.50	557.85	116.35	0.35	3.97	0.08	4.39	0.54	0.1 g/t AuEq cut off	62.4
		incl.	461.00	462.50	1.50	0.99	13.40	0.22	4.50	1.53	1.0 g/t AuEq cut off	2.3
		incl.	510.60	545.85	35.25	0.74	6.76	0.14	6.64	1.06	1.0 g/t AuEq cut off	37.4
		GYDD- 22-024	10.10	648.25	638.15	0.30	2.07	0.13	10.53	0.55	0.1 g/t AuEq cut off	351.2
		incl.	10.10	53.70	43.60	0.19	3.17	0.02	3.16	0.26	0.1 g/t AuEq cut off	11.5
		and	94.80	118.80	24.00	0.17	0.39	0.03	11.41	0.23	0.1 g/t AuEq cut off	5.5
		and	144.80	146.30	1.50	7.89	2.85	0.02	2.10	7.96	1.0 g/t AuEq cut off	11.9
		and	332.16	648.25	316.09	0.49	3.31	0.24	14.53	0.95	0.1 g/t AuEq cut off	298.8
		OR	344.00	648.25	304.25	0.50	3.37	0.25	14.46	0.98	0.1 g/t AuEq cut off	296.9

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director

Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commen	tary									
		incl.	332.16	487.00	154.84	0.92	5.72	0.45	18.96	1.76	0.1 g/t AuEq cut off	272.5
		incl.	344.00	452.50	108.50	1.28	7.78	0.62	20.00	2.44	1.0 g/t AuEq cut off	264.3
		incl.	369.25	418.75	49.50	2.36	13.96	1.13	26.35	4.45	1.0 g/t AuEq cut off	220.4
		OR	369.25	423.43	54.18	2.20	12.91	1.04	24.70	4.14	1.0 g/t AuEq cut off	224.1
		GY2DD- 22-001	191.00	202.20	11.20	0.74	14.46	0.01	2.26	0.94	0.5 g/t AuEq cut off	10.5
		and	290.40	291.30	0.90	1.26	2.56	0.00	1.20	1.30	1.0 g/t AuEq cut off	1.2
		and	403.10	492.50	89.40	0.13	6.71	0.01	3.13	0.22	0.5 g/t AuEq cut off	19.9
		incl.	403.10	412.80	9.70	0.41	15.24	0.01	1.84	6.06	0.5 g/t AuEq cut off	58.8
		and	592.60	596.68	4.08	0.85	120.96	0.01	4.05	2.37	0.1 g/t AuEq cut off	9.7
		GYDD-									0.1 g/t AuEq cut off	
		22-025	4.0	EOH	1190.0	0.2	1.3	0.1	12.6	0.3		357.0
		Incl.	4.0	515.1	511.1	0.3	2.1	0.1	11.9	0.4	0.1 g/t AuEq cut off	204.4
		Incl.	65.0	434.5	369.5	0.3	2.2	0.1	13.3	0.5	0.1 g/t AuEq cut off	184.8
		Incl.	65.0	243.3	178.8	0.5	2.4	0.1	8.8	0.6	0.3 g/t AuEq cut off	107.3
		Incl.	65.0	166.0	101.0	0.6	2.8	0.1	5.9	0.8	1.0 g/t AuEq cut off	80.8
		Incl.	65.0	101.0	36.0	0.8	2.5	0.1	5.1	0.9	1.0 g/t AuEq cut off	32.9
		GYDD-									1 g/t AuEq cut off	
		22-026	93.3	94.5	1.3	231.3	10.7	0.0	1.8	231.5		301.0
		and	94.5	1045.1	960.0	0.1	1.4	0.1	14.7	0.3	0.1 g/t AuEq cut off	212.7
		Incl.	208.5	563.6	355.1	0.2	1.9	0.1	24.3	0.4	0.1 g/t AuEq cut off	142.0
		and	208.5	239.0	30.5	0.4	5.3	0.1	26.6	0.6	1.0 g/t AuEq cut off	18.3
		Incl.	377.5	416.0	38.5	0.4	1.4	0.1	32.4	0.6	1.0 g/t AuEq cut off	23.1
		GYDD-									0.1 g/t AuEq cut off	
		22-027	0.0	eoh	871.9	0.2	1.3	0.0	14.2	0.3		261.6
		Incl.	92.6	367.9	275.3	0.3	1.8	0.0	8.3	0.4	0.1 g/t AuEq cut off	110.1
		Incl.	92.6	106.0	13.4	0.6	3.0	0.1	31.8	0.8	1.0 g/t AuEq cut off	10.2
		and	202.6	270.5	67.9	0.5	3.2	0.1	7.7	0.6	1.0 g/t AuEq cut off	40.7
		and	302.0	317.8	15.8	0.6	0.5	1.4	0.0	0.6	1.0 g/t AuEq cut off	40.8
		and	360.0	367.9	7.9	0.8	5.3	0.0	2.8	0.9	1.0 g/t AuEq cut off	6.8
		GYDD-									0.1 g/t AuEq cut off	
		22-028	4.5	379.7	375.2	0.2	2.5	0.1	1.6	0.4		150.1
		Incl.	4.5	23.3	18.8	0.7	1.2	0.0	4.7	0.7	1.0 g/t AuEq cut off	14.1
		and	172.3	366.6	194.3	0.2	3.4	0.1	1.3	0.5	0.1 g/t AuEq cut off	87.8
		and	318.0	366.6	48.6	0.5	6.4	0.3	1.1	1.0	1.0 g/t AuEq cut off	48.6
		GYDD-									0.1 g/t AuEq cut off	
		22-029	7.0	389.2	382.2	0.2	2.7	0.1	2.0	0.3		114.7
		Incl.	153.3	360.5	207.3	0.2	3.8	0.1	2.2	0.5	0.1 g/t AuEq cut off	103.7
		Incl.	192.3	226.8	34.5	0.2	8.3	0.2	3.5	0.7	1.0 g/t AuEq cut off	24.2
		and	342.2	360.5	18.3	0.6	4.4	0.2	1.6	1.0	1.0 g/t AuEq cut off	18.3

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		GYDD-									0.1 g/t AuEq cut off	
		22-030	0.0	eoh	689.5	0.2	1.4	0.1	9.0	0.3		234.4
		Incl.	75.4	393.0	317.7	0.4	1.2	0.1	15.0	0.5	0.1 g/t AuEq cut off	158.9
		Incl.	76.9	80.6	6.0	1.5	1.7	0.0	7.3	1.6	1.0 g/t AuEq cut off	9.8
		and	280.5	334.5	54.0	0.9	1.7	0.1	13.6	1.0	1.0 g/t AuEq cut off	54.0
		and	370.5	393.0	22.5	1.1	1.7	0.1	9.1	1.3	1.0 g/t AuEq cut off	29.3
		GYDD-									0.1 g/t AuEq cut	
		23-031	1.0	532.0	531.0	0.2	0.5	0.0	1.2	0.3		159.3
		Incl.	1.0	24.9	23.9	0.9	0.5	0.1	0.8	0.9	1 g/t AuEq cut	21.6
		and	152.6	185.7	33.1	0.5	1.5	0.0	1.7	0.6	1 g/t AuEq cut	19.9
		and	292.1	308.1	16.0	0.6	0.5	0.0	1.5	0.6	1 g/t AuEq cut	9.6
		GYDD-									0.1 g/t AuEq cut off	
		23-032	0.0	781.5	781.5	0.2	1.3	0.0	8.6	0.3		212.6
		Incl.	120.3	377.2	257.0	0.4	1.8	0.0	6.5	0.5	1.0 g/t AuEq cut off	122.6
		Incl.	120.3	270.7	150.5	0.6	2.4	0.0	7.9	0.7	1.0 g/t AuEq cut off	100.4
		Incl.	120.3	188.3	68.1	1.0	3.6	0.1	9.3	1.1	1.0 g/t AuEq cut off	77.6
		and	162.7	188.3	25.7	1.7	5.3	0.1	13.9	1.9	1.0 g/t AuEq cut off	48.9
		GYDD-									0.1 g/t AuEq cut off	
		23-033	7.0	449.2	442.2	0.2	2.1	0.1	3.7	0.3		125.1
		Incl.	164.3	411.9	247.6	0.2	3.0	0.1	4.6	0.4	1.0 g/t AuEq cut off	99.5
		Incl.	216.2	367.6	151.4	0.2	4.0	0.1	4.1	0.5	1.0 g/t AuEq cut off	70.8
		Incl.	216.8	225.0	8.2	0.5	11.8	0.1	1.6	0.7	1.0 g/t AuEq cut off	6.1
		and	264.3	290.0	25.8	0.4	4.9	0.2	7.8	0.7	1.0 g/t AuEq cut off	18.3
		and	335.0	364.6	29.6	0.3	5.8	0.2	1.8	0.6	1.0 g/t AuEq cut off	18.5
		GYDD-									0.1 g/t AuEq cut off	
		23-034	108.9	273.5	164.6	0.2	3.8	0.2	1.3	0.6		94.4
		Incl.	161.6	182.6	21.0	0.5	3.5	0.2	1.1	0.9	1.0 g/t AuEq cut off	18.3
		and	224.2	250.9	26.7	0.3	7.0	0.3	1.4	1.0	1.0 g/t AuEq cut off	26.3
		and	375.2	411.2	36.0	0.5	0.8	0.0	1.1	0.5	1.0 g/t AuEq cut off	19.3
		GYDD-									0.1 g/t AuEq cut off	
		23-035	0.0	268.7	268.7	0.1	0.7	0.0	4.6	0.2		55.9
		Incl.	55.8	84.0	28.2	0.4	1.0	0.0	1.4	0.4	1.0 g/t AuEq cut off	12.3
		and	240.5	255.2	14.7	0.4	1.1	0.1	6.0	0.5	1.0 g/t AuEq cut off	7.7
		GYDD-									1.0 g/t AuEq cut off	
		23-036	65.9	67.4	1.5	2.9	1.7	0.0	0.8	2.9	- •	4.4
		and	80.9	99.8	19.0	0.7	1.7	0.0	1.5	0.7	0.1 g/t AuEq cut off	13.5
		and	189.9	767.5	577.6	0.1	1.0	0.0	4.5	0.2	0.1 g/t AuEq cut off	123.1
		Incl.	189.9	353.2	163.3	0.3	0.8	0.0	2.4	0.4	1.0 g/t AuEq cut off	63.7
		Incl.	189.9	253.3	63.4	0.6	0.7	0.0	1.2	0.7	1.0 g/t AuEq cut off	42.6

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Contact Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Comr	nentary									
		GYDE)-								0.1 g/t AuEq cut off	
		23-03		767.2	767.2	0.1	1.4	0.0	12.7	0.2	Sin Brindley cut on	149
		Incl.	81.9	183.7	101.8	0.2	1.9	0.0	4.3	0.3	1.0 g/t AuEq cut off	32
		Incl.	150.7	173.2	22.5	0.3	2.1	0.1	3.4	0.5	1.0 g/t AuEq cut off	11
		and	390.5	438.8	48.3	0.1	2.5	0.1	16.4	0.3	1.0 g/t AuEq cut off	14
		GYDE				-	-	-	-		0.1 g/t AuEq cut off	
		23-03	8 157.7	235.3	77.6	0.1	2.0	0.1	1.1	0.3	0, 1	20
		Incl.	212.2	235.3	23.1	0.2	2.0	0.1	1.1	0.4	1.0 g/t AuEq cut off	9.
		and	321.9	483.3	161.4	0.1	2.1	0.1	2.7	0.3	0.1 g/t AuEq cut off	40
		Incl.	321.9	376.5	54.7	0.2	3.4	0.1	3.3	0.4	1.0 g/t AuEq cut off	21
		Incl.	360.3	376.5	16.2	0.5	4.5	0.1	4.0	0.8	1.0 g/t AuEq cut off	12
		GYDE)_								0.1 g/t AuEq cut off	
		23-03		809.9	805.3	0.5	1.6	0.0	4.2	0.6		47
		Incl.	4.6	551.3	546.7	0.7	2.0	0.1	3.5	0.8	1.0 g/t AuEq cut off	42
		Incl.	4.6	235.8	231.2	1.4	2.5	0.1	3.7	1.5	1.0 g/t AuEq cut off	35
		Incl.	108.0	117.9	9.9	1.0	3.3	0.0	2.5	1.1	1.0 g/t AuEq cut off	10
		and	190.5	202.8	12.3	21.4	1.5	0.0	1.9	21.5	1.0 g/t AuEq cut off	26
		Incl.	190.5	192.0	1.5	172.3	8.0	0.0	1.3	172.4	1.0 g/t AuEq cut off	25
		Hole		To	Interval		Ag	Cu	Mo	AuEq	Comments	inter (gra
		(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(ppm)	(g/t)		meti
		CVDD										
		22-002		533.20	528.70	0.30	2.30	0.09	13.22	0.49	1.0 g/t cut off	260
		incl.	4.50	401.60	397.10	0.34	2.76	0.11	14.31	0.56	1.0 g/t cut off	222
		incl.	6.00	114.00	108.00	0.42	2.83	0.13	15.75	0.68	1.0 g/t cut off	73
		and	166.60	296.80	130.20	0.42	3.33	0.12	15.55	0.67	1.0 g/t cut off	87.
		incl.	273.50	284.30	10.80	2.51	14.93	0.35	9.16	3.29	1.0 g/t cut off	35
		CVDD-			F 7 0 0 0	0.21	1 00	0.00	11 10	0.20	0.4 - /++	240
		22-00 2 incl.	2 5.00 14.00	575.00 320.70	570.00 306.70	0.21 0.22	1.99 2.27	0.08 0.12	11.43 13.59	0.38 0.45	0.1 g/t cut off 0.5 g/t cut off	218 138
		incl.	174.65	199.50	24.85	0.22	2.27 4.54	0.12	53.36	0.45	1.0 g/t AuEq cut off	22
		incl.	309.30	319.20	24.85 9.90	0.40	4.34 6.14	0.25	15.83	1.50	1.0 g/t AuEq cut off	14
		and	309.30	396.20	9.10	0.37	6.91	0.20	8.93	1.08	1.0 g/t AuEq cut off	9.
		incl.	490.20	504.20	14.00	0.77	1.29	0.03	24.72	0.85	1.0 g/t AuEq cut off	11
		CVDD- 22-003	2.5	eoh	509.90	0.24	1.41	0.07	31.30	0.4	0.1 g/t AuEq cut off	203
		22-00: incl.	2.5	246.5	244.00	0.36	1.76	0.09	44.80	0.6	0.5 g/t AuEq cut off	146
nger Exploration Limited 23 591 382 EL	I Issued Capital 1,106.6m shares 10.0m options 60m perf shares	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knaue Mr Fletcher Q Mr Sergio Rot	uinn, Chairma	D ⁻ In I	Contact F: +61 8 6380 9 E: admin@chal		ı				

www.challengerex.com

Criteria	JORC Code explanation	Commen	tary									
		incl.	2.5	159.4	156.90	0.44	1.76	0.10	54.70	0.7	1.0 g/t AuEq cut off	109.83
		incl.	2.5	75.8	73.30	0.55	1.81	0.11	59.10	0.8	1.0 g/t AuEq cut off	58.64
		incl.	66.3	75.8	9.50	0.85	1.40	0.13	146.00	1.2	1.0 g/t AuEq cut off	11.4
		CVDD-	203	eoh	456.20	0.13	0.91	0.05	10.90	0.25	0.1 g/t AuEq cut off	114.05
		22-004										
		incl.	443.9	649.3	205.40	0.19	1.00	0.06	11.10	0.3	0.5 g/t AuEq cut off	61.62
		incl.	448.4	504.5	56.10	0.23	1.13	0.07	8.30	0.4	1.0 g/t AuEq cut off	22.44
		incl.	593	602	9.00	0.58	0.87	0.04	6.70	0.7	1.0 g/t AuEq cut off	6.3
		CVDD-	8.1	572.2	564.10	0.21	2.30	0.09	44.10	0.4	0.1 g/t AuEq cut off	225.64
		22-005										
		incl.	8.1	286.1	278.00	0.30	3.21	0.11	68.20	0.6	0.5 g/t AuEq cut off	166.8
		incl.	25.8	154.5	128.70	0.39	3.36	0.11	112.10	0.7	1.0 g/t AuEq cut off	90.09
		CVDD-										
		22-006	96.4	600.7	504.3	0.31	1.43	0.07	1.8	0.3	0.1 g/t AuEq cut off	151.29
		incl.	97.9	374.0	276.1	0.25	1.54	0.07	1.9	0.4	1.0 g/t AuEq cut-off	110.44
		incl.	200.2	209.1	8.9	0.63	1.24	0.07	1.1	0.8	1.0 g/t AuEq cut-off	7.12
		and	257.9	374.0	116.1	0.39	2.56	0.14	2.0	0.5	1.0 g/t AuEq cut-off	58.05
		incl.	257.9	288.9	31.0	0.32	3.99	0.16	1.4	0.6	1.0 g/t AuEq cut-off	18.60
		and	365.0	374.0	9.0	1.51	1.98	0.22	1.7	1.9	1.0 g/t AuEq cut-off	17.10
		CVDD-										
		22-007	73.9	806.1	732.2	0.20	1.16	0.04	8.1	0.3	0.1 g/t AuEq cut off	219.66
		incl.	251.0	589.3	338.3	0.30	1.49	0.06	6.8	0.4	1.0 g/t AuEq cut-off	135.32
		incl.	251.0	498.2	247.2	0.37	1.72	0.06	5.8	0.5	1.0 g/t AuEq cut-off	123.60
		incl.	251.0	301.7	50.7	0.78	1.79	0.06	5.1	0.9	1.0 g/t AuEq cut-off	45.63
		and	422.5	438.3	15.8	0.62	1.59	0.06	4.0	0.7	1.0 g/t AuEq cut-off	11.06
		CVDD-										
		22-008	129.8	179.2	49.5	0.20	0.66	0.02	1.3	0.25	0.1 g/t AuEq cut off	12.37
		and	431.1	448.8	17.7	0.15	1.18	0.05	4.0	0.25	0.1 g/t AuEq cut off	4.42
		CVDD-										
		22-009	1.0	195.4	194.4	0.12	1.22	0.04	11.1	0.2	0.1 g/t AuEq cut off	38.88
		and	259.3	397.8	136.5	0.08	1.15	0.06	12.4	0.2	0.1 g/t AuEq cut off	27.30
		and	812.5	886.5	74.3	0.10	0.56	0.04	13.0	0.2	0.1 g/t AuEq cut off	14.86
		CVDD-										
		22-010	114.5	888.4	773.9	0.27	1.30	0.06	11.8	0.4	0.1 g/t AuEq cut off	309.56
		incl.	182.3	585.1	402.8	0.40	1.65	0.08	10.9	0.6	1.0 g/t AuEq cut off	241.68
		incl.	182.3	482.1	299.8	0.50	1.83	0.09	11.7	0.7	1.0 g/t AuEq cut off	209.86
		incl.	182.3	363.2	180.9	0.73	2.43	0.11	9.5	1.0	1.0 g/t AuEq cut off	180.90
		incl.	182.3	244.7	62.4	1.53	2.70	0.12	7.0	1.8	1.0 g/t AuEq cut off	112.32
		CVDD- 22-011	168.25	174.25	6.00	0.07	0.77	0.07	15.18	0.21	0.1 g/t AuEq cut off	1.24

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

fice Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commen	tary									
		and	194.45	201.95	7.50	0.06	0.70	0.06	11.53	0.17	0.1 g/t AuEq cut off	1.30
		and	363.20	455.00	91.80	0.13	0.56	0.04	4.03	0.20	0.1 g/t AuEq cut off	18.18
		incl.	363.20	367.70	4.50	0.33	0.62	0.05	11.91	0.42	0.1 g/t AuEq cut off	1.90
		and	397.70	433.70	36.00	0.24	0.61	0.04	3.03	0.32	0.1 g/t AuEq cut off	11.66
		CVDD- 22-012	46.12	48.75	2.63	0.63	1.89	0.02	1.92	0.68	0.1 g/t AuEq cut off	1.78
		and	123.85	153.85	30.00	0.17	1.03	0.01	1.78	0.20	0.1 g/t AuEq cut off	5.93
		and	215.44	239.44	24.00	0.19	4.70	0.01	1.86	0.26	0.1 g/t AuEq cut off	6.28
		and	413.87	429.69	15.82	0.23	0.58	0.00	1.54	0.24	0.1 g/t AuEq cut off	3.79
		CVDD- 22-013	227.00	472.75	245.75	0.16	1.37	0.01	2.65	0.20	0.1 g/t AuEq cut off	48.07
		incl.	265.00	291.00	26.00	0.20	2.50	0.01	1.32	0.25	0.1 g/t AuEq cut off	6.49
		and	319.00	333.00	14.00	0.23	4.16	0.02	2.91	0.31	0.1 g/t AuEq cut off	4.37
		and	366.40	367.40	1.00	1.56	1.19	0.01	1.80	1.59	1.0 g/t AuEq cut off	1.59
		and	396.00	449.90	53.90	0.27	2.02	0.01	2.47	0.28	0.1 g/t AuEq cut off	15.08
		incl.	434.50	435.90	1.40	1.72	11.00	0.08	0.90	1.99	1.0 g/t AuEq cut off	2.79
		and	731.70	733.20	1.50	0.30	0.39	0.01	1425.60	1.32	1.0 g/t AuEq cut off	1.98
		CVDD- 22-014	59.65	65.85	6.20	1.13	1.30	0.01	1.80	1.15	0.1 g/t AuEq cut off	7.16
		and	171.20	172.10	0.90	11.63	16.10	0.03	1.60	11.8 8	1.0 g/t AuEq cut off	10.70
		and	198.20	216.00	17.80	0.44	1.18	0.01	1.94	0.48	0.1 g/t AuEq cut off	8.48
		incl.	210.20	215.25	5.05	0.90	1.33	0.01	1.83	0.94	1.0 g/t AuEq cut off	4.76
		and	256.80	271.15	14.35	1.17	4.73	0.03	2.22	1.28	1.0 g/t AuEq cut off	18.31
		and	344.65	346.15	1.50	1.46	0.39	0.01	1.60	1.48	1.0 g/t AuEq cut off	2.21
		and	401.10	405.60	4.50	4.58	9.62	0.02	1.76	4.73	1.0 g/t AuEq cut off	21.30
		and	486.70	506.20	19.50	0.39	0.71	0.01	2.79	0.41	0.1 g/t AuEq cut off	8.02
		incl.	504.70	506.20	1.50	3.04	4.11	0.03	1.70	3.14	1.0 g/t AuEq cut off	4.71
		and	605.10	606.60	1.50	1.11	2.53	0.01	1.40	1.16	1.0 g/t AuEq cut off	1.73
		and	687.60	693.60	6.00	0.71	3.66	0.01	1.56	0.77	1.0 g/t AuEq cut off	4.63
		and	845.60	846.33	0.73	8.59	4.57	0.00	1.80	8.65	1.0 g/t AuEq cut off	6.32
		CVDD- 22-015	9.10	757.57	748.47	0.10	0.42	0.04	9.15	0.17	0.1 g/t AuEq cut off	127.96
		incl.	23.20	23.80	0.60	2.24	6.04	0.22	16.30	2.70	1.0 g/t AuEq cut off	1.62
		and	77.40	233.69	156.29	0.13	0.75	0.06	17.80	0.25	0.5 g/t AuEq cut off	39.23
		OR	77.40	291.75	214.35	0.13	0.68	0.06	18.05	0.24	0.1 g/t AuEq cut off	51.23
		incl.	169.62	171.12	1.50	0.97	0.64	0.06	8.40	1.09	1.0 g/t AuEq cut off	1.64
		and	364.20	365.70	1.50	0.88	1.11	0.15	8.40	1.15	1.0 g/t AuEq cut off	1.73
		and	440.70	442.20	1.50	1.25	0.71	0.05	0.80	1.35	1.0 g/t AuEq cut off	2.02
		and	646.57	648.07	1.50	5.96	0.22	0.02	1.50	6.00	1.0 g/t AuEq cut off	8.99

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Australian Registered Office

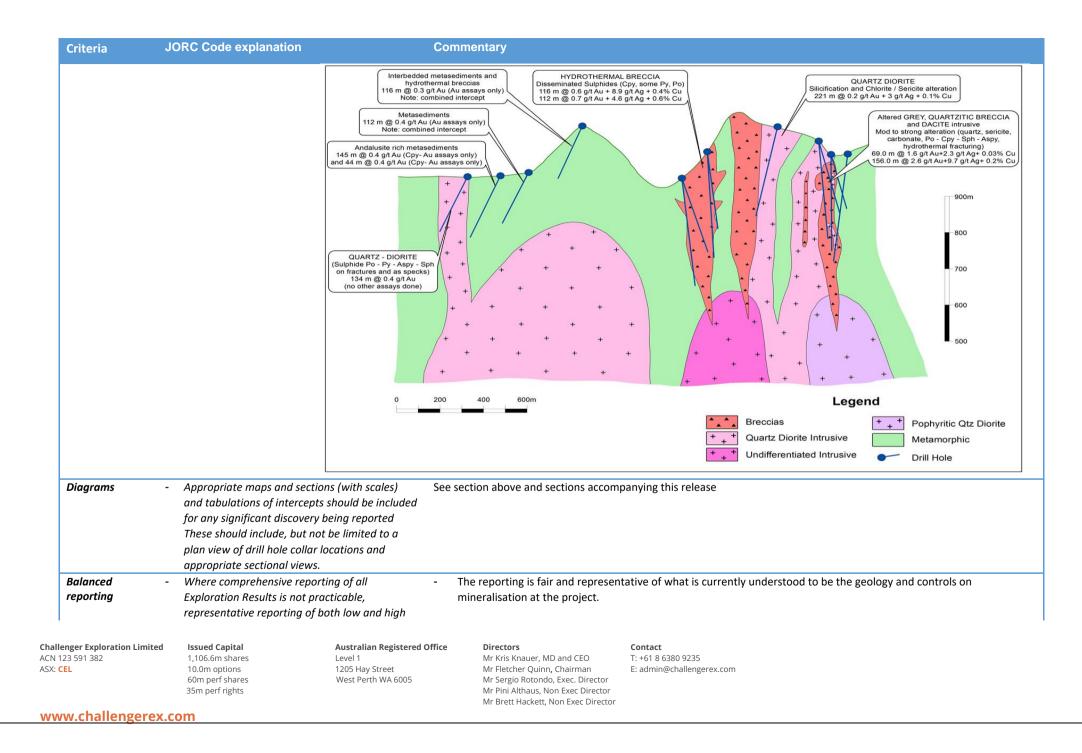
Level 1

1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director


Criteria	JORC Code explanation	Commer	itary									
		CVDD- 22-016	10.80	81.00	70.20	0.42	7.15	0.01	4.08	0.53	0.5 g/t AuEq cut off	37.4
		incl.	10.80	22.80	12.00	0.58	5.86	0.02	2.14	0.68	1.0 g/t AuEq cut off	8.18
		and	36.30	48.70	12.40	1.48	18.52	0.01	14.33	1.74	1.0 g/t AuEq cut off	21.5
		and	275.00	515.90	240.90	0.11	2.26	0.02	3.34	0.16	0.1 g/t AuEq cut off	39.0
		incl.	312.50	326.00	13.50	0.14	5.42	0.04	5.66	0.27	0.1 g/t AuEq cut off	3.6
		and	397.50	436.50	39.00	0.20	2.60	0.01	2.44	0.26	0.1 g/t AuEq cut off	9.9
		CVDD- 22-017	20.30	301.50	281.20	0.08	0.62	0.05	4.56	0.17	0.1 g/t AuEq cut off	47.0
		incl.	53.20	54.70	1.50	0.33	4.75	0.43	2.90	1.13	1.0 g/t AuEq cut off	1.69
		and	167.95	221.50	53.55	0.14	0.88	0.06	8.94	0.25	0.1 g/t AuEq cut off	13.3
		and	388.50	445.50	57.00	0.10	0.36	0.03	3.01	0.16	0.1 g/t AuEq cut off	8.93
		incl.	388.50	390.00	1.50	1.17	0.20	0.01	1.00	1.19	1.0 g/t AuEq cut off	1.7
		and	648.10	664.60	16.50	0.02	1.19	0.10	1.32	0.21	0.1 g/t AuEq cut off	3.4
Relationship between mineralisation widths and	- These relationships are - particularly important in the reporting of - Exploration Results.	inclined holes may not be re	vertical. on is that th presentativ	ne breccia h ve of the tru	nosted min ue width of	eralisatio this brec	n occurs i ccia hosteo	n near ver d minerali	tical breco sation. The	cia pipes. e relation	Thus, intersections in hship between the drill	steeply
between mineralisation widths and intercept	particularly important in the reporting of - Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be	hosted mineralisation is sub The preliminary interpretation	vertical. on is that th presentativ	ne breccia h ve of the tru	nosted min ue width of	eralisatio this brec	n occurs i ccia hosteo	n near ver d minerali	tical breco sation. The	cia pipes. e relation	Thus, intersections in hship between the drill	steeply
between mineralisation	particularly important in the reporting of - Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its	hosted mineralisation is sub The preliminary interpretation inclined holes may not be re	vertical. on is that th presentativ	ne breccia h ve of the tru	nosted min ue width of	eralisatio this brec	n occurs i ccia hosteo	n near ver d minerali	tical breco sation. The	cia pipes. e relation	Thus, intersections in hship between the drill	steeply
between mineralisation widths and intercept	 particularly important in the reporting of - Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	hosted mineralisation is sub The preliminary interpretation inclined holes may not be re	vertical. on is that th presentativ	ne breccia h ve of the tru	nosted min ue width of	eralisatio this brec	n occurs i ccia hosteo	n near ver d minerali	tical breco sation. The	cia pipes. e relation	Thus, intersections in hship between the drill	steeply

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
	grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degerees and 100 degerees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of : • Inversion 2D products • 2D model sections (for each line) of the: • DC resistivity model; • IP chargeability model using the DC resistivity model as a reference; • IP chargeability model using a half-space resistivity model as a reference; • Joint MT+DC resistivity model; • Joint MT+DC resistivity model; • Inversion 3D products • 3D MT model; • Cross-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release
		DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
		along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of Ω iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input da as starting model. For IP inversions, the apparent chargeability \Box is computed by carrying out two DC resistivity forwa models with conductivity distributions $\sigma(xi,zj)$ and $(1-\eta)\sigma(xi,zj)$ (Oldenburg and Li, 1994), where (xi,zj) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion a presented on the digital archived attached to this report.
		 MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) ar magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rock A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tens is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies ampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, differe conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex number represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic field respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate th geological strike direction. Another important use of the tipper is to display its components as vectors, named in

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary			
		information apparent in the actual data. Inversion model The user must understand the model norm used and eva For this project, 2D inversions were performed on the TI direction is perpendicular to the profile for all sites: the T field); no TE mode (crossline E-field) were used in the 2D The 2D inversions were performed using the TM-mode r assuming 10% and 5% error for the resistivity and phas component Z. No static shift of the data has been applied The 3D inversion was carried out using the CGG RLM-3D over an area of approximately 5km x 3.5km. All MT sites The 3D inversion was completed using a sub sample of th the measured data from 10 kHz to 0.01 Hz with a nomina impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used as The measured tipper data (Tzx, Tzy) were also used as in homogenous half space with resistivity of 100 Ohm-m w mesh with 75 m x 75 m cell size was used in horizontal d cover the first 4 km. Padding cells were added in each dir 3D inversion was run for a maximum of 50 iterations. In addition a total of 129 samples distributed along 12 I chargeability properties (Chargeability M and Susceptib Sample Core IP Tester, manufactured by Instrumentation	aluate whether the mo TAN/EMAP profiles da TM mode is then defir 0 inversions. resistivity and phase d se respectively, which d on the data. 0 inversion code. The 3 from this current surv he MT data with a mat al 4 frequencies per de s input data with an a sput data with an asso vas used as the startin directions in the resist rection to accommoda holes were analysed to ility (SCPT 0.001 SI).	bdel is geologically p ata. For each profile, hed by the inline E-file lata interpolated at 6 is equivalent to 5% BD inversions of the vey were used for the ximum of 24 frequer ecade. At each site, t ssociated error set to ong model for this 3D ivity model. The ver ate the inversion for to measure the resis The equipment used	lausible. we assume the strike eld (and cross line H- 6 frequencies per decad 6 error on the impedan MT data were complet e 3D inversion. ncies at each site coveri the complete MT compl o 5% on each parameter 0 MT inversion. A unifor tical mesh was defined boundary conditions. T stivity (Rho (Ohm*m) a I for the analyses was t
		only as first order estimate, and not as "absolute" (true) v subject to some errors (i.e. wrong size of the core entere		e field crew were not	
			ed in the equipment). Colorado V mining cor	icession has been m	t repeated and potentia ade using surface gold i
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the C	ed in the equipment). Colorado V mining cor	icession has been m	t repeated and potentia ade using surface gold
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the C soil anomalies, drill hole geological and assay information	ed in the equipment). Colorado V mining cor n and panel sampling	ncession has been m from an adit at one (t repeated and potentia ade using surface gold of the targets.
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the C soil anomalies, drill hole geological and assay information Exploration Target Anomaly A	ed in the equipment). Colorado V mining cor n and panel sampling Unit	ncession has been m from an adit at one Low estimate	t repeated and potenti ade using surface gold of the targets. High Estimate
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the C soil anomalies, drill hole geological and assay information <u>Exploration Target Anomaly A</u> Surface area (100 ppb Au in soil envelope):	ed in the equipment). Colorado V mining cor n and panel sampling <u>Unit</u> m ²	icession has been m from an adit at one Low estimate 250000	t repeated and potenti ade using surface gold of the targets. <u>High Estimate</u> 250000
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the C soil anomalies, drill hole geological and assay information <u>Exploration Target Anomaly A</u> Surface area (100 ppb Au in soil envelope): Depth	ed in the equipment). Colorado V mining cor n and panel sampling <u>Unit</u> m ² m	ncession has been m from an adit at one Low estimate 250000 400	t repeated and potenti ade using surface gold of the targets. <u>High Estimate</u> 250000 400
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the O soil anomalies, drill hole geological and assay information Exploration Target Anomaly A Surface area (100 ppb Au in soil envelope): Depth Bulk Density	ed in the equipment). Colorado V mining cor n and panel sampling <u>Unit</u> m ² m kg/m ³ Mt	ncession has been m from an adit at one Low estimate 250000 400 2600	t repeated and potenti ade using surface gold of the targets. <u>High Estimate</u> 250000 400 2750
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the O soil anomalies, drill hole geological and assay information Exploration Target Anomaly A Surface area (100 ppb Au in soil envelope): Depth Bulk Density Tonnage	ed in the equipment). Colorado V mining cor n and panel sampling <u>Unit</u> m ² m kg/m ³ Mt g/t	ncession has been m from an adit at one Low estimate 250000 400 2600 260	t repeated and potenti ade using surface gold of the targets. <u>High Estimate</u> 250000 400 2750 275
		subject to some errors (i.e. wrong size of the core entere Colorado V: Exploration Target: An Exploration Target for two mineralized zones on the O soil anomalies, drill hole geological and assay information Exploration Target Anomaly A Surface area (100 ppb Au in soil envelope): Depth Bulk Density Tonnage Grade Au	ed in the equipment). Colorado V mining cor n and panel sampling <u>Unit</u> m ² m kg/m ³ Mt	from an adit at one of the set of	t repeated and potenti ade using surface gold of the targets. <u>High Estimate</u> 250000 400 2750 275 0.7

Issued Capital 1,106.6m shares 10.0m options 60m perf shares . 35m perf rights

Level 1

1205 Hay Street West Perth WA 6005

Contact Mr Kris Knauer, MD and CEO T: +61 8 6380 9235 Mr Fletcher Quinn, Chairman E: admin@challengerex.com Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary			
		Contained Ag	Moz	8.8	8 19.
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate
		Surface area (100 ppb Au in soil envelope):	m²	175000	175000
		Depth	m	400	400
		Bulk Density	kg/m ³	2600	2750
		Tonnage	Mt	182	193
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		% Tonnage above cut-off	%	70%	90%
		Contained Au	Moz	1.6	3.9
		Contained Ag	Moz	6.1	13.9
		Total of Target A & B	Unit	Low estimate	High Estimate
		Tonnage	Mt	442	468
		Contained Au	Moz	4.0	9.5
		Contained Ag	Moz	14.9	33.8
		Mineral Resource. The following is an explanation of the inputs used in form	ulating the Evolorati	on Targot	
		The following is an explanation of the inputs used in form	ulating the Explorati	un raiget.	
		 Surface Area: The surface area of the target has been vertically to the surface. The surface projection of t gold-in-soil anomaly contour. This area has been us Depth: A depth of 400 metres from surface has been underground bulk tonnage mining project would be controlled by steeply plunging / dipping intrusions a from surface. 	the intersections in t sed to estimate the h en used as an estima e expected to extend	he drill holes coincid horizontal extent of t te of the depth that . The mineralization	es with the 100 ppb A the mineralization. an open pit and at Colorado V is

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill test priority targets identified through exploration reported previously on both the EL Guayabo and Colorado V targets, centered on surface soil and rock chip sampling, underground channel sampling and previously completed drilling which has been relogged and resampled. Interpretation of magnetic survey data following calibration with drilling. Undertake additional IP and/or EM surveys subject to a review of the appropriateness of the techniques and calibration with drill hole data.

Issued Capital 1,106.6m shares 10.0m options 60m perf shares 35m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Fletcher Quinn, Chairman Mr Sergio Rotondo, Exec. Director Mr Pini Althaus, Non Exec Director Mr Brett Hackett, Non Exec Director Contact T: +61 8 6380 9235 E: admin@challengerex.com