

Gold recoveries of 91-94% from Phase 1 metallurgical testing at Challenger's Hualilan Gold Project

Highlights

- Initial metallurgical testing of the skarn mineralisation demonstrates excellent gold and silver recoveries via simple gravity separation followed by single stage sulphide flotation generating:
 - Gold recoveries of 91-94%
 - Silver recoveries of 84-86%
- The results represent a significant increase in overall combined gravity and flotation recoveries compared to the historical testing which indicated recoveries of 80% for gold and silver
- Recovery of 32-49% of gold via gravity separation prior to flotation allows the flexibility to evaluate the possibility of producing a gold dore on site
- Importantly, fine grinding not required with best recoveries using a P₈₀ = 86-106 micron grind
- Rougher flotation tests indicate the potential to recover significant base metal credits via gravity followed by a simple two stage float:
 - Produced high quality gravity and Cu/Pb rougher concentrates grading 442 g/t and 232 g/t gold respectively and a separate Zn rougher concentrate containing 73% of the zinc
 - The potential to efficiently recover base metals can significantly improve economics with zinc accounting for 10 % of the value of the high-grade skarn mineralisation
- This initial round of metallurgical testing confirms that gravity and flotation recovery of gold/base metal concentrates, which is a low risk and industry-standard process, provides a clear path to evaluate commercialisation with excellent recoveries plus base metal credits

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"The initial results from Phase 1 metallurgical are a significant uplift on what was achieved historically and I am delighted with gold recoveries of over 91% from a process consisting of gravity recovery followed by a single sulphide float. This is about as simple as metallurgy gets providing us with the ability to evaluate commercialisation via an option which traditionally requires far less capital expenditure than the alternatives.

"The ability to recover significant base metal credits while maintaining high gold and silver recoveries, again via simple gravity recovery followed by flotation, is also an excellent outcome. This can significantly improve economics with zinc accounting for 10 % of the value of the high-grade skarn mineralisation. The high gold grades in these rougher concentrates will make them extremely sought after and we expect cleaning tests will be able to further improve their quality.

We look forward to updating the market on further metallurgical testing over the coming months."

Challenger Exploration (ASX: CEL) ("CEL" or the "Company") is pleased to announce results from its Phase 1 metallurgical testing at the Company's Hualilan Gold project. The results from Phase 1 of the program, which comprised first pass gravity and rougher flotation testing, indicate excellent gold and silver recoveries up to 94.2% (gold) and 85.7% (silver).

The results are significantly better than both the historical recoveries and the Company's expectations. They demonstrate a simple process route for a bulk gold/silver concentrate and the ability recover the zinc and lead credits whilst maintaining high recoveries of 89% (gold) and 84% (silver).

The initial metallurgical testwork from the high-grade skarn mineralisation was undertaken at SGS Canada Inc in Lakefield Ontario. The initial testing comprised Phase 1 gravity and rougher flotation testing, now complete. Phase 2 testing will involve comminution and cleaner flotation testing. Phase 1 examined both the production of a bulk gold/silver concentrate and the production of rougher Cu/Pb and Zn concentrate streams. The test results are from the high-grade skarn mineralisation. A bulk sample for testing of the intrusion- hosted mineralisation is currently being prepared for testing.

High gravity gold recoveries were achieved in all tests with gravity recovery averaging 42.4% and ranging from 32% to 49%. Grind sizes ranged from P_{80} of 106 to 72 microns with the best recoveries achieved at grind sizes of 86-106 microns indicating fine grinding is not required. High gravity recovery provides the flexibility to evaluate the production of gold dore on site.

Simple flotation testing producing a simple bulk rougher and a bulk sulphide concentrate returned excellent recoveries of 91-94% (gold) and 84-86% (silver) at a P_{80} of 100-106 micron grind. The concentrate grades of 40-43 g/t (gold), 90-120 g/t (silver) and 11% (zinc) are expected to be improved with cleaning. Both concentrates produce excellent gold and silver recoveries via a simple bulk gravity/single stage sulphide flotation process and are expected to be saleable.

Rougher flotation tests designed to produce a separate Cu/Pb concentrate followed by a Zn rougher concentrate demonstrated the recovery of significant base metal credits. The best result produced recoveries of 89% (gold), 84% (silver), 79% (zinc), 79% (lead) at a grind size of P₈₀ of 86 microns. The output was a gravity concentrate grading 442 g/t gold, a Cu/Pb rougher concentrate grading 232 g/t gold, 632 g/t silver, 18.7% lead plus a zinc rougher concentrate. Phase 2 will include a series of additional rougher flotation tests to improve recoveries, cleaning to separate the Cu/Pb rougher concentrate into Cu and Pb concentrates, and cleaning to upgrade the zinc rougher concentrate.

Gold concentrates are a burgeoning market with strong demand from smelters across China, Japan, Korea and India. The flotation and sale of a gold concentrate is a simple, low risk, and low capital intensive option, and Phase 1 testing demonstrates excellent recoveries in the 89-94% range for gold and 84-86% for silver with the potential to capture base metal credits. The Company notes that additional process such as pressure/biological oxidation or atmospheric leaching could possibly produce gold on site. While the Company will review these options as appropriate CEL's philosophy is to follow a simple, low risk, and well understood process route rather than chasing marginal additional recovery at the expense of a creating a capital intensive and complex operation.

METALURGICAL TESTWORK PROGRAM

The testing program comprised Phase 1 Gravity and Rougher Flotation Testing which will be followed by Phase 2 Comminution and Cleaner Flotation testing.

The Phase 1 testwork was conducted on a 147 kg bulk sample collected by the drilling and sampling of 3/4 core from four dedicated metallurgical holes, with additional material provided by a further 2 holes from which 1/4 core was provided. These were designed to provide a bulk sample containing grades and mineralogy representative of the high-grade skarn mineralisation hosted by limestone. The holes were located at Main Manto, Cerro Norte (GNDD003, GMDD-039 and GMDD-043), Sentazon (GMDD-0040), and the Magnata Manto (GNDD018 and GMDD-041). Assays for holes used for the metallurgical bulk sample are shown in Table 1. The grade of the bulk sample was 10.4 g/t gold, 31.7 g/t silver, 0.15% copper, 0.46% lead and 3.2% zinc.

The program of metallurgical testing was designed prior to the discovery of the intrusive hosted mineralisation as a significant target at the Hualilan project. The bulk of the intercepts in the intrusives such as 209.0m at 1.1 g/t AuEq, including 49.0m at 3.0 g/t AuEq (GNDD-155), 130.8m at 2.5 g/t AuEq (GNDD-157), and 39.0m at 5.6 AuEq (GNDD-088A) occurred after the commencement of metallurgical testing. A bulk sample of the intrusive hosted mineralisation is currently being prepared for metallurgical testing. Phase 2 testing of the high-grade skarn mineralisation will not commence until the Phase 1 testing on the intrusion- hosted mineralisation has been completed.

Drill hole (#)	From (m)	To (m)	Total (m)	Au (g/t)	Ag (g/t)	Zn (%)	Cu (%)	Pb (%)	weight (kg)
GMDD-039	67.60	68.60	1.00	24.5	58.3	3.9	0.2	1.8	5.10
GMDD-040	116.72	125.40	8.68	5.5	11.8	2.2	0.0	0.00	53.97
GMDD-041	65.00	68.60	3.60	11.1	111	10.6	0.6	0.22	19.37
GMDD-043	70.50	70.80	0.30	25.9	80.5	9.4	0.3	3.1	1.12
GNDD-003	55.00	61.10	6.10	34.7	21.9	2.9	0.0	0.20	22.25
GNDD-018	63.20	66.95	3.75	7.1	78.3	3.6	0.2	3.6	12.82

Table 1: Grades and weights of core samples that contributed to metallurgical sample

Phase 1 Metallurgical Test program

The Phase 1 Program comprised gravity separation and rougher flotation testing. Phase 1 was designed to determine the recovery of gold that is amenable to gravity separation while the rougher tests determine the relative rate of float recovery of the sulphide minerals. In the case of Hualilan due to a lack of data it was not known if any of the gold was amenable to gravity recovery.

Knelson/Mozley Separation

Gravity separation was investigated by a Knelson Concentrator. The Knelson concentrate obtained was upgraded by the Mozley separator to produce a concentrate for chemical analysis. The final products included a Mozley concentrate and Mosely Middlings and a combined Knelson and Mozley Tailings sample.

Rougher Flotation

Rougher tests are typically used to determine recovery by sulphide flotation of the minerals while examining several variables such as primary grind size, reagent scheme, and pulp density. Gravity separation was performed prior to all flotation tests as a substantial percentage of gold (average of 42.4%) was recovered into a gravity concentrate. The gravity separation tailings were subjected to rougher kinetics flotation tests to recover the remaining gold and base metal.

The first stage of rougher tests was designed to recover the gold bearing pyrite along with any chalcopyrite with the sphalerite to be recovered in a second rougher flotation stage. Each rougher kinetics test included the collection of up to 4 incremental rougher concentrates and one rougher tailings.

Phase 2 Metallurgical Test program

Phase 2 of the program will be undertaken after the completion of the Phase 1 metallurgical testing on the intrusion-hosted mineralisation. Phase 2 will involve Comminution Testing including Bond Ball Mill Grindability and Bond Abrasion tests and Cleaner Flotation and Cleaner Variability testing. The Cleaner Flotation and Cleaner Variability testing will investigate the effect of flowsheet and variables such as reagent scheme and regrind size on upgrading rougher concentrate into cleaner zinc and copper/lead concentrates.

Phase 2 will also include additional rougher flotation testing utilising different reagent regimes designed to further improve the recoveries into the rougher Cu/Pb and Zn concentrates. This will be followed by a series of cleaning tests to separate the Cu/Pb rougher concentrate into separate copper and lead concentrates and cleaning tests to upgrade the zinc/gold rougher concentrate.

METALURGICAL TESTWORK RESULTS

The testing comprised an initial test which demonstrated excellent recoveries into a bulk rougher concentrate (F1); a series of rougher flotation tests designed to produce a Cu/Pb and a Zn rougher concentrate (F2-F4); and a final bulk sulphide float (F5). The overall recoveries and grades of the five tests (on the basis of combining the gravity and rougher concentrates into a single product) are shown in Table 2.

The recoveries are significantly better than both the historical recoveries and the Company's initial expectations. The results demonstrate a viable path to produce a bulk concentrate with recoveries up to 94.2% (gold) and 86% (silver) or the ability to recover significant zinc and lead credits while maintaining high recoveries of 89% (gold) and 84% (silver).

The high mass pull in all five rougher flotation tests which ranged from 24.5-32.5% is a factor of the high-grade skarn mineralisation comprising 30-35% sulphides. The sulphide minerals are predominantly pyrite and sphalerite (zinc) with lesser galena (lead), chalcopyrite (copper), and minor pyrrhotite. The high-grade skarn and the intrusion-hosted mineralisation have the same observed

mineral assemblage and gold is predominantly associated with pyrite and lesser sphalerite. However, the total sulphide content in the intrusion-hosted mineralisation is generally 1% to 3%, where grades are 0.5-1.5 g/t gold. Accordingly the Company expects future tests on lower grade material from the intrusions to show a correspondingly lower mass pull from flotation of the mineralisation in the intrusives with similar concentrate grades.

Test	Weight		F	Recovery				Con	centrate G	rade	
	Recovery	Au	Ag	Cu	Pb	Zn	Au	Ag	Cu	Pb	Zn
	(%)	(%)	(%)	(%)	(%)	(%)	(g/t)	(g/t)	(%)	(%)	(%)
Sample	n/a						17.2	44	0.2	0.7	4.45
F1	32.5	94.2	85.7	84.2	80.2	79.7	40.0	89.6	0.6	1.2	11.0
F2	26.4	81.9	81.9	82.8	76.0	77.0	46.7	125.0	0.7	1.5	12.6
F3	27.8	89.0	83.6	82.0	78.9	78.8	57.9	115.6	0.7	1.5	12.9
F4	24.5	84.4	82.3	79.4	76.8	77.2	52.7	156.1	0.7	1.7	14.1
F5	31.4	90.6	84.6	90.9	79.4	79.1	43.1	119.9	0.6	1.4	10.9
Max	32.5	94.2	85.7	90.9	80.2	79.7	57.9	156.1	0.7	1.7	14.1
Min	24.5	81.9	81.9	79.4	76.0	77.0	40.0	89.6	0.6	1.2	10.9
Median	28	89	84	83	79	79	47	120	0.7	1.5	13

Table 2 - Summary of Phase 1 Metallurgical testwork

- Assume re-combine gravity (Mosley) conc with rougher cons
- 1) F1 2 kg 35 min @ 65% (p80 106 um)
- 2) F2 2 kg 35 min @ 65% (p80 106um)
- 3) F3 2 kg 65 min @ 65% (p80 86 um)
- 4) F4 4 kg 75 min @65% (p80 72 um)
- 5) F5 2kg 55 min @65% (p80 100um)

Bulk Rougher Flotation Testing

Test F1 was the first rougher flotation test and demonstrated the ability to make one simple bulk rougher concentrate with high recoveries of gold (94.2%) and silver (85.7%) at a grind of P_{80} of 106 microns. Gravity recovery was 46% of the gold into a gravity concentrate grading 258 g/t gold. Combining the gravity and rougher concentrate generates concentrate grades of 40 g/t gold and 90 g/t silver prior to any cleaning.

As would be expected the bulk rougher concentrate also recovered the base metals capturing 84.2% of the copper, 79.7% of the zinc and 80.2% of the lead. The content of lead (1.2%) and copper (0.6%) in the bulk concentrate is below the level where it would attract penalties and some value may be able to be extracted from the zinc given the bulk rougher concentrate contains 11% zinc.

Test F5 was designed to produce a bulk sulphide concentrate after F1 demonstrated that the bulk gold/silver concentrate was a simple option. The mass balance results are shown below in Table 3. At

a grind of P_{80} of 100 microns 43% of the gold was recovered in the gravity circuit which when combined with the sulphide concentrate produced a similar result to F1. Recoveries of 90.6% (gold), 84.6% (silver), 90.9% (copper), 79.4% (lead), 79.1% (zinc) into a bulk sulphide concentrate grading 43.1 g/t (gold), 119.9 g/t (silver), 0.6% (copper), 1.4% (lead), 10.9% (zinc).

The Company is extremely encouraged by the excellent gold and silver recoveries that testing has demonstrated are able to be achieved from a gravity and single stage bulk sulphide float. Bulk concentrate will be the lowest capital and operating expenditure option on a per tonne throughput basis when compared to other processes. It is also a significant positive that these high recoveries from Phase 1 testing have been achieved without the need for fine grinding.

Product	Wei	ght		А	ssays				Po	ercentag	ge	
			Au	Ag	Cu	Pb	Zn	Au	Ag	Cu	Pb	Zn
	g	%	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Mozley Conc	5.4	0.3	2891					44.7				
Mozely Middlings	33.0	1.7	41.6					3.9				
Cu/Pb Ro Conc	33.0	1.7	232.0	625.0	3.59	18.7	15.0	21.9	27.8	26.3	62.1	5.6
Zn Ro Conc	465.7	24.1	13.9	89.0	0.54	0.36	13.8	18.5	55.8	55.8	16.9	73.2
Zn Ro Tails	1396.8	72.2	2.74	8.7	0.06	0.15	1.33	11.0	16.4	18.0	21.1	21.2
Head (calc)	1933.9	100.0	18.1	38.4	0.23	0.51	4.54	100	100	100	100	100
Head (direct)			17.2	44.0	0.20	0.70	4.45					

Table 3 - test F5 Mass Balance Table

Rougher Concentrate Testing

Two stage rougher flotation tests were designed to determine if there is potential to economically recover the base metal credits. All tests involved gravity separation followed by two stage flotation process to produce a Cu/Pb and a Zn rougher concentrate. A series of three first pass rougher concentrate tests (F2, F3 and F4) were conducted with the primary difference between tests being the decreased grind sizes.

All tests achieved excellent recoveries of gold (82-89%) silver (82-84%) zinc (77-79%) and lead (76-79%), with the best recoveries achieved in test F3 at a grind of P_{80} of 86 microns. Test F4, which was undertaken using a 72 micron grind, confirmed that finer grinding does not enhance recoveries.

Test F3 achieved a recovery of 89% (gold), 83.6% (silver), and significant base metal recoveries with the mass balance Table for F3 shown in Table 4. Approximately 70% of the gold and 62.1% (lead) was recovered into high quality gravity and Cu/Pb rougher concentrates, with an upgrading factor of 15 for copper and 36 for lead. The gravity concentrate returned grades of 442 g/t gold, while the Cu/Pb rougher concentrate returned grades of 232 g/t gold, 632 g/t silver, and 18.7% lead. The zinc rougher contained 73% of the zinc and returned grades of 14 g/t gold, 89 g/t silver, and 14% zinc.

The addition of a cleaner flotation circuit may be able to separate the copper and lead into separate saleable concentrates and upgrade the zinc rougher product to a zinc concentrate. While resource definition and process development are ongoing, preliminary trade-off analyses will be initiated that compare the economic attractiveness of selling a bulk concentrate versus separate concentrates for each payable metal.

Product	Weigh	ıt			Ass	ays					Perc	entage		
			Au	Ag	Cu	Pb	Zn	Zn	Au	Ag	Cu	Pb	Zn	Zn
	(g)	(%)	(g/t)	(g/t)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Mozley Conc	8.3	0.4	1538		0.14	40.3	0.58	32.4	42.8					
1st Clnr Conc	470.4	23.5	28.0	147.0	0.70	1.67	13.9	42.8	44.1	77.8	83.7	73.6	75.4	94.78
1st Clnr Tails	148.4	7.4	7.5	40.6	0.19	0.42	2.15	2.6	3.7	6.8	7.2	5.8	3.7	1.8
Ro Tails	1372.9	68.6	2.05	10.0	0.03	0.16	1.32	0.53	9.4	15.4	9.1	20.6	20.9	3.4
Head (calc)	2000.0	100.0	14.9	44.5	0.20	0.53	4.33	10.62	100	100	100	100	100	100
Head (direct)			17.2	44.0	0.20	0.70	4.45							

Table 4 - test F3 Mass Balance Table

QEMSCAN Analysis

The Company also conducted QEMSCAN analysis on the gravity tails to determine the mineralogy and provide modals, association, and liberation data for the Master Composite (ground to 100 microns) and to determine if a finer grind was required.

The key findings of the QEMSCAN were:

- The presence of approximately 20-25% of the zinc as Zn-silicates and Zn-oxides/carbonates. This caps the potential recoveries of zinc to 75-80% using a sulphide flotation circuit and confirms Sphalerite recovery is excellent.
- Inclusions of copper sulphide are in the sphalerite, which is reflected in the copper liberation where 35% of the liberated copper is associated with sphalerite. This accounts for approximately 40% of the copper being contained in the zinc rougher concentrate, however given the low initial head grades of copper the final contained copper represents only 0.5% of the zinc rougher concentrate and should not attract penalties.

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in mid-2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 131m at 2.3 g/t Au, 1.6 g/t Ag, 0.5% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t Au and 4.1 g/t Ag including 63m at 1.6 g/t Au and 5.1 g/t Ag.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)							
Measured	218	14.2	100							
Indicated	226	14.6	106							
Total of Measured & Indicated	445	14.4	206							
Inferred	977	13.4	421							
Measured, Indicated & Inferred	1,421	13.7	627							

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

#¹ For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement - Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling. For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts. For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine. Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination. A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.
Drilling techniques	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.
		Hole_id Type East North Elevation Azimuth Dip Depth Date (m) (m) (m ASL) (°) (°) (m)

Criteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)		(m)	Date
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55	45.0	1999

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commenta	iry							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		Uolo id	Tuno	East	North	Elevation	Azimuth	Dip	Depth	Date
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00
						40400	350		112 F	4000 00
		DDH29	DD	2504964.1	6602136.6	1810.0		-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH30 DDH31	DD DD	2505004.1 2504897.6	6602156.3 6602112.7	1809.3 1808.1	059 116	-85 -75	62.1 41.4	1999-00 1999-00
		DDH30 DDH31 DDH32	DD DD DD	2505004.1 2504897.6 2504939.4	6602156.3 6602112.7 6602139.2	1809.3 1808.1 1809.1	059 116 350	-85 -75 -51	62.1 41.4 100.7	1999-00 1999-00 1999-00
		DDH30 DDH31 DDH32 DDH33	DD DD DD DD	2505004.1 2504897.6 2504939.4 2504939.4	6602156.3 6602112.7 6602139.2 6602139.2	1809.3 1808.1 1809.1 1809.1	059 116 350 350	-85 -75 -51 -65	62.1 41.4 100.7 62.9	1999-00 1999-00 1999-00 1999-00
		DDH30 DDH31 DDH32 DDH33 DDH34	DD DD DD DD DD	2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1809.3 1808.1 1809.1 1809.1 1801.3	059 116 350 350 116	-85 -75 -51 -65 -70	62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00
		DDH30 DDH31 DDH32 DDH33 DDH34 DDH35	DD DD DD DD DD DD	2505004.1 2504897.6 2504939.4 2504939.4 2504826.5 2505003.9	6602156.3 6602112.7 6602139.2 6602139.2 6601920.2 6602156.7	1809.3 1808.1 1809.1 1809.1 1801.3 1808.8	059 116 350 350 116 310	-85 -75 -51 -65 -70 -85	62.1 41.4 100.7 62.9 69.4 174.6	1999-00 1999-00 1999-00 1999-00 1999-00
		DDH30 DDH31 DDH32 DDH33 DDH34	DD DD DD DD DD	2505004.1 2504897.6 2504939.4 2504939.4 2504826.5	6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1809.3 1808.1 1809.1 1809.1 1801.3	059 116 350 350 116	-85 -75 -51 -65 -70	62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commenta	ary							
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00

Criteria	JORC Code explanation	Commentar	ry							
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7 1999	9-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 1999	9-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 1999	9-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 1999	9-00
			Тур	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	е	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2	
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70.0	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9	
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1	
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0	
		04HD16C		2504457.1	6600311.7	1770.3	195	-65	225.5	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9	
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45 -60	60.0	
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7	
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0	
		04HD30 04HD31	DD DD	2504421.0	6600044.0 6601326.0	1764.0	108	-45 60	128.2	
		04HD31	DD	2504687.0 2504828.0	6601916.0	1794.0 1801.3	045 116	-60 -70	242.9 68.4	
<u> </u>		U4HU32	טט	2504828.0	0001910.0	1801.3	110	-70	08.4	

Criteria	JORC Code explanation	Commentary							
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various Argentinian drilling companies based in Mendoza and San Juan. The core has not been oriented.

CEL drilling of reverse circulation (RC) drill holes is being done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes to GNDD105 are surveyed using DGPS. Collar location for GNDD060 and holes from GNDD106 are surveyed with a handheld GPS to be followed up with DGPS.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6
GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9

Criteria	JORC Code explanation	Commentary						
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary						
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
		GMDD041	504473.000	6600104.000	1806.400	-55	095	95.0
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0
		GNDD045	504366.823	6599679.058	1793.712	-57	115	242.0
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0
		GNDD060	504803.0	6601065.0	1822.0	-60	115	200.0
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary						
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0
		GNDD106	504459.3	6599614.7	1792.9	-55	115	300.0
		GNDD108	504895.0	6601154.9	1824.0	-60	115	200.0
		GNDD109	504792.0	6601026.4	1822.0	-60	115	209.0
		GNDD112	504898.2	6601197.6	1825.8	-60	115	188.0
		GNDD113	504704.7	6601067.1	1826.3	-60	115	230.0
		GNDD114	504436.0	6600111.0	1808.0	-50	115	116.0
		GNDD115	504862.0	6601285.0	1824.4	-60	115	251.0
		GNDD116	504443.7	6599555.8	1789.5	-65	115	269.0
		GNDD117	504436.0	6600111.0	1808.0	-60	115	120.0
		GNDD118	505086.0	6601110.0	1811.2	-60	295	300.0
		GNDD119	504827.0	6601540.0	1837.6	-66	115	115.0
		GNDD120	504408.2	6600102.0	1808.3	-60	110	164.0
		GNDD121	504867.0	6601137.0	1822.1	-57	115	181.0
		GNDD122	504658.0	6600647.6	1816.8	-60	115	250.0
		GNDD123	504822.0	6601512.0	1835.6	-63	130	130.0
		GNDD124	504408.2	6600102.0	1808.3	-70	115	160.0
		GNDD125	505138.0	6601130.0	1808.4	-60	295	300.0
		GNDD126	504719.2	6601148.6	1828.0	-60	115	196.0
		GNDD127	504892.0	6601505.0	1837.0	-55	115	300.0
		GNDD128	504712.3	6601108.0	1827.1	-60	115	230.0
		GNDD129	504636.0	6600284.0	1820.0	-55	185	291.0
		GNDD130	504839.0	6601092.8	1821.4	-60	115	227.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD131	504655.5	6600737.1	1818.4	-60	115	280.0
		GNDD132	504822.0	6601358.0	1830.5	-55	115	300.0
		GNDD133	504870.3	6601640.9	1838.5	-60	170	182.0
		GNDD134	504636.0	6600284.0	1820.0	-55	154	290.0
		GNDD135	504846.0	6601548.7	1834.8	-64	350	135.0
		GNDD136	504844.5	6601443.3	1829.3	-55	115	310.0
		GNDD137	504650.0	6600695.0	1818.2	-60	115	370.0
		GNDD138	504888.0	6601538.0	1837.5	-65	350	237.0
		GNDD139	504759.7	6601085.5	1825.3	-60	115	200.0
		GNDD140	504994.4	6601546.3	1835.3	-60	60	230.0
		GNDD141	504788.4	6601251.8	1827.9	-70	115	270.0
		GNDD142	504432.8	6599627.0	1793.2	-62	115	360.0
		GNDD143	504898.2	6601197.6	1825.8	-20	115	120.0
		GNDD144	504964.6	6601519.7	1837.3	-70	40	410.0
		GNDD145	504560.7	6600224.1	1816.1	-64	170	200.0
		GNDD146	504776.1	6601210.3	1827.9	-70	115	350.0
		GNDD147	504964.6	6601519.7	1837.3	-60	355	240.0
		GNDD148	504844.5	6601443.3	1829.3	-24	115	85.5
		GNDD149	504844.5	6601443.3	1829.3	-5	115	88.1
		GNDD150	504850.2	6601523.3	1836.8	-65	350	251.0
		GNDD151	504672.6	6601214.5	1833.6	-60	115	430.0
		GNDD152	504893.0	6601470.0	1835.0	-15	115	165.0
		GNDD153	504693.0	6600984.0	1824.2	-70	115	326.0
		GNDD154	504894.3	6601504.8	1836.3	-65	350	212.0
		GNDD155	504780.1	6601120.2	1824.0	-60	115	420.0
		GNDD156	504839.1	6601401.6	1829.4	-37	115	59.0
		GNDD157	504636.0	6600284.0	1820.0	-55	170	527.0
		GNDD158	504807.6	6601535.3	1837.0	-60	350	170.0
		GNDD159	504907.7	6601149.3	1825.0	-40	115	202.0
		GNDD160	504968.0	6601543.0	1835.4	-55	350	170.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary						
		GNDD161	504667.0	6600820.0	1819.0	-60	115	251.00
		GNDD162	504723.0	6601279.3	1832.1	-60	115	180.00
		GNDD163	504750.3	6601575.5	1840.3	-60	115	180.00
		GNDD164	504673.4	6601523.0	1840.2	-60	115	311.00
		GNDD165	504488.0	6599861.0	1805.4	-10	115	253.80
		GNDD166	504565.3	6600337.7	1819.6	-60	115	327.00
		GNDD167	504730.0	6600879.0	1818.0	-60	115	251.00
		GNDD168	504559.6	6600384.5	1815.5	-60	115	314.00
		GNDD169	504683.8	6601562.4	1841.0	-60	115	416.00
		GNDD170	504663.0	6600335.0	1822.9	-60	170	123.50
		GNDD170A	504663.0	6600335.0	1822.9	-60	170	380.00
		GNDD171	504679.0	6600903.0	1821.0	-70	115	350.00
		GNDD172	504488.0	6599861.0	1805.4	-45	115	119.70
		GNDD173	504694.5	6601336.6	1835.6	-60	115	191.00
		GNDD174	504473.0	6600105.9	1806.4	-11	115	329.50
		GNDD175	504650.3	6601092.5	1829.4	-60	115	353.00
		GNDD176	504734.7	6600655.9	1813.5	-60	115	350.00
		GNDD177	504761.8	6601481.8	1836.2	-60	115	160.00
		GNDD178	504626.0	6600177.0	1823.3	-60	185	145.20
		GNDD179	504405.5	6600183.0	1811.3	-55	170	192.10
		GNDD180	504653.1	6600782.2	1819.1	-60	115	341.00
		GNDD181	504678.0	6600330.0	1824.0	-60	160	400.00
		GNDD182	504666.9	6601128.9	1828.8	-60	115	337.00
		GNDD183	504777.0	6601519.0	1837.3	-65	115	146.00
		GNDD184	504672.7	6601170.3	1830.3	-60	115	321.50
		GNDD185	504730.7	6601408.1	1834.9	-60	115	180.00
		GNDD186	504738.8	6600742.2	1814.0	-60	115	208.00
		GNDD187	504620.9	6601547.6	1843.4	-67	115	320.00
		GNDD188	504658.0	6601044.8	1827.4	-60	115	280.00
		GNDD189	504473.0	6600105.9	1806.4	-29	115	320.00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

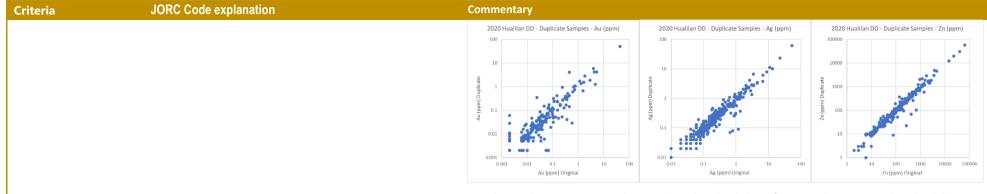
Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary						
		GNDD191	504600.0	6601422.7	1841.1	-70	115	260.00
		GNDD192	504618.4	6600577.7	1818.6	-60	115	260.00
		GNDD193	504689.4	6601427.3	1837.5	-60	115	293.00
		GNDD194	504678.0	6600330.0	1824.0	-60	140	300.00
		GNDD196	504638.4	6600391.9	1821.4	-60	115	296.00
		GNDD197	504860.8	6601484.0	1831.5	-68	350	72.00
		GNDD198	504789.3	6601248.3	1828.3	-60	115	161.00
		GNDD199	504812.0	6601476.0	1834.9	-56	350	266.00
		GNDD201	504307.8	6599795.7	1800.0	-65	115	170.00
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights


Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary								
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76		
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70		
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86		
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86		
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145		
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60		
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30		
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60		
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80		
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60		
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70		
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96		
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150		
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120		
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60		
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120		
Drill sample recovery	- Method of recording and assessing core and chip sample	•	ed into wooden boxe	•	•					
	recoveries and results assessed Measures taken to maximise sample recovery and ensure	the end of each	run. These depths ar	e reconciled by CEI	. geologists who	en meas	uring core reco	very.		
	representative nature of the samples.	Triple tube drilling has been being done by CEL to maximise core recovery.								
	- Whether a relationship exists between sample recovery		are collected from a							
	and grade and whether sample bias may have occurred		s collected for each r	_	•	•				
	due to preferential loss/gain of fine/coarse material.		ples using a riffle spli sure sample recovery			ie. The	whole sample r	ecovered is		
		A possible relation	onship has been obse	erved between histo	oric sample rec	overy an	d Au Ag or Zn g	grade		
		whereby low red	coveries have resulted	d in underreporting	of grade. Insuf	fficient in	nformation is n	ot yet		
			e accurately quantify			-				
		-	rock. A positive corr erally post mineral ar		•			ne		
	- Whether core and chip samples have been geologically		e available for most o					od No		
Logging	and geotechnically logged to a level of detail to support		is from the historic d							
	appropriate Mineral Resource estimation mining studies		lect. No RC sample c							

Criteria	JORC Code explanation	Commentar	у							
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to work. RC dr	a level ill chips . Geolo	that is suita are logged gical loggir	able for geo I for geolog ng is done i	ological mod sy, alteration n MS Excel in	elling resou and minera a format t	g lithology alt rce estimation ilisation. Whe hat can readil	n and metal ere possible	logging is
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	split using a the drill core sample inte lengths aver samples has From hole G duplicate dia (log scale for Au (ppm) Ag (ppm) Cd (ppm) Cu (ppm) Fe (%) Pb (ppm) S (%) Zn (ppm) n=count RSQ = R squ	wide bise where rvals are age 1.3 been r NDD07 amond r Au, Ag n 288 288 288 288 288 288 288 288 288 2	ade chisel of the saw cut as selected It is selecte	or a manual at is to be in passed on lift cond-half cothe core trace diamond es are % core shown be mean original 0.306 0.87 4.70 30.49 1.406 168.6 0.409 771	core split product to ensure the logy alter ore samples by for future core samples. The low core samples are samples. The low core samples are samples. The low core samples are samples are samples are samples are samples. The low core samples are	ress. The gree half-core ation and metale reference. In the shape been buplicate commedian original or	duplicate 0.008 0.19 0.17 3.35 1.445 15.0 0.080 79	variance original 7.012 13.37 911.95 3.6E+04 3.1 1.6E+06 1.867 2.3.E+07	indicates on

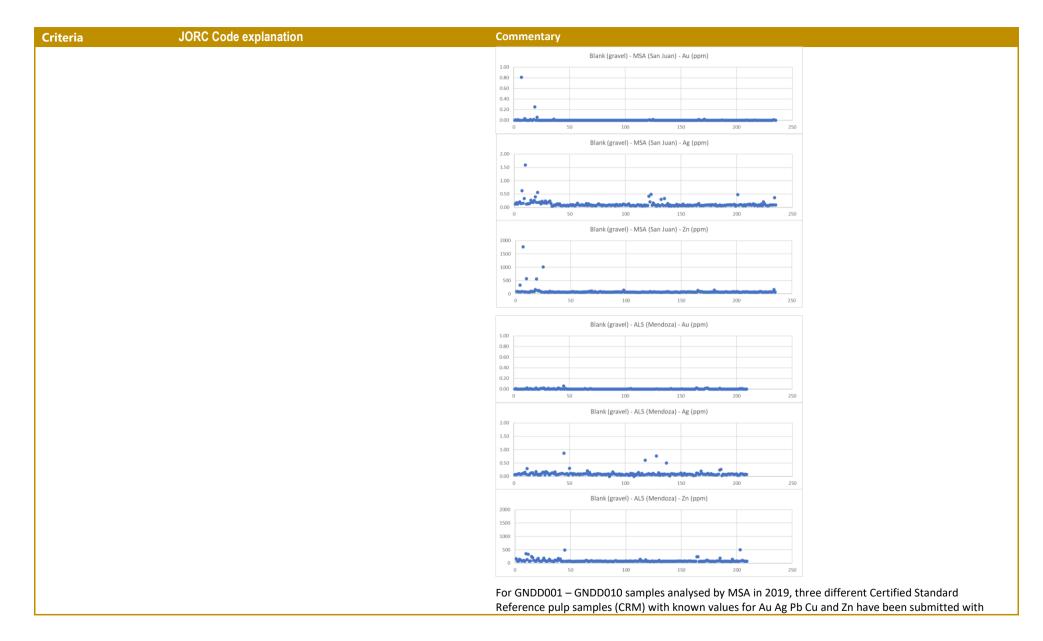
RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
n=count								

CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

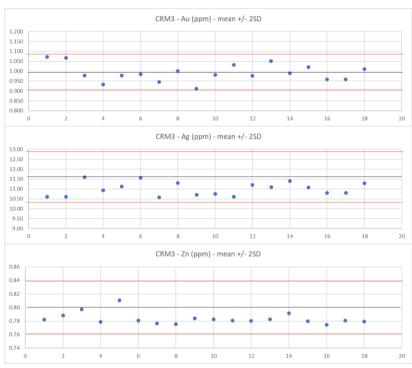
Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

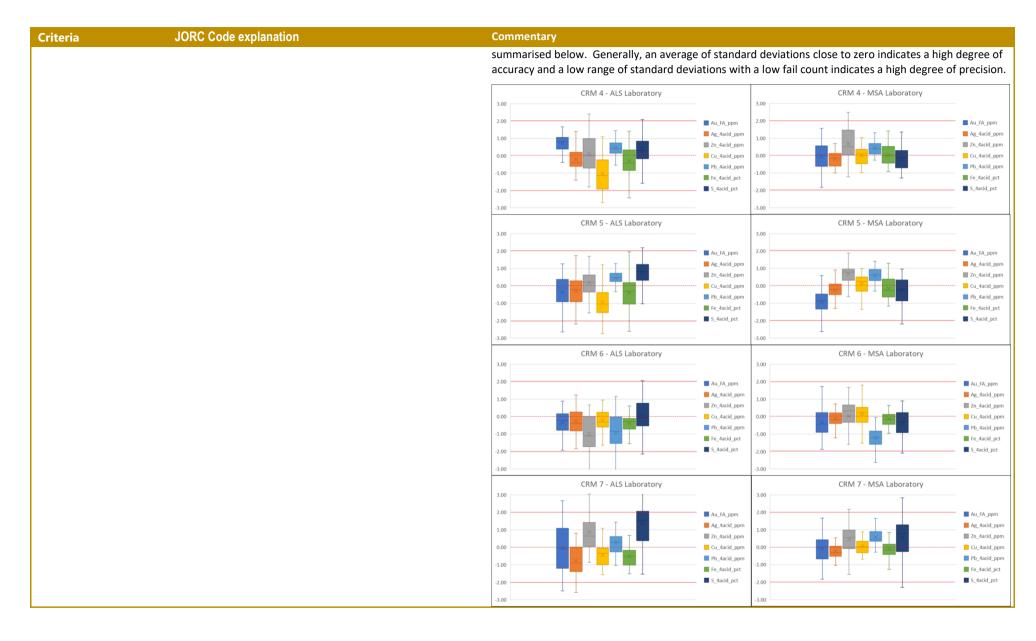

Quality of assay data and laboratory tests

- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

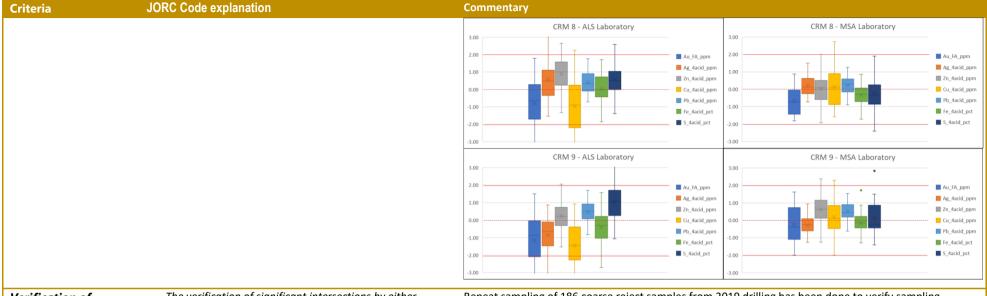
The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

Internal laboratory standards were used for each job to ensure correct calibration of elements.


CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.


Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria JORC Code explanation Commentary


samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988

Criteria	JORC Code explanation	Commentary										
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983			
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994			
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954			
		Cd values >1000 are set at REE is the sum off Ce, La, S		s set at 50	00. Below	detectio	n is set at ze	ero				
		CEL have sought to twin so analysis of the twin holes h GNDD003 – DDH34 and 04 GNRC110 – DDH53 GNDD144 – 05HD39 GNRC107 – GNDD008/008	nas yet to be co HD08				esults of pre	vious exp	loration. A full			
		Final sample assay analyses are received by digital file in PDF and CSV format. The backed-up and the data copied into a drill hole database for geological modelling. Assay results summarised in the context of this report have been rounded approprigures. No assay data have been otherwise adjusted.										
								led appropriately to 2 significant				
Location of data points	 Accuracy and quality of surveys used to locate drill hole (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimatio 	Argentinian SGM survey. 1	Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to									
	Specification of the grid system used.Quality and adequacy of topographic control.	The drill machine is set-up design.	on the drill pad	using ha	nd-held e	quipmen	t according	to the pro	posed hole			
		Diamond core drill holes at are surveyed down hole ex rods.										
		All current and previous dr surveyed using DGPS to pro					gic surface ¡	ooints hav	re been			
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	No regular drill hole spacin spacing is being applied to to check previous explorat establish controls on mine	infill and extenion, extend min	sion drilli eralisatio	ng where on along st	appropri rike, and	ate. The cu provide so	rrent drilli me inform	ing is designed nation to			

Criteria	JORC Code explanation	Commentary
	estimation procedure(s) and classifications applied Whether sample compositing has been applied.	2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

settings.

Criteria Mineral tenem

JORC Code explanation

Mineral tenement and land tenure status

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)	
Cerro Sur						
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6	
Cerro Norte						
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	

Criteria	JORC Code explanation	Commentary						
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6	

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)	
Cerro Sur						
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9	
Cerro Norte						
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9	

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date Expiry Date		Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Exploration done by other parties

 Acknowledgment and appraisal of exploration by other parties. Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz–galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria

JORC Code explanation

Commentary

Material drill holes:

- easting and northing of the drill hole collar
- elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent Person should clearly explain why this is the case.

been allowed. No metallurcial or recovery factors have been used. Drill collar location is provided in the previous section.

Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
AG16	38.6	1.2	0.1	28.6	1.7
MG10	108.0	3.0	1.3	No assay	No assay
DDH36	24.7	9.3	1.6	46.3	1.2
DDH53	17.3	1.4	1.0	1.7	0.00
DDH53	24.0	8.9	3.7	239.5	0.03
DDH53	35.7	3.9	3.9	87.8	0.06
DDH53	41.0	3.0	2.6	7.6	0.20
DDH54	20.0	1.1	1.2	0.7	0.00
DDH54	31.1	8.3	3.9	32.1	0.80
DDH65	62.0	8.2	11.0	60.6	1.2
DDH65	82.0	1.0	1.8	33.4	0.30
DDH66	83.1	7.2	23.7	42.9	2.4
DDH66	87.9	2.4	69.9	114.4	2.2
DDH66	104.9	2.8	1.8	29.0	0.10
DDH67	98.7	1.3	0.2	7.8	1.3
DDH68	4.0	17.9	2.2	6.3	0.20
DDH68	73.7	0.5	0.8	9.0	1.2
DDH69	4.0	16.1	2.3	1.6	0.10
DDH69	76.9	0.3	0.1	7.0	28.0
DDH69	79.7	0.8	1.3	120.0	4.5
DDH70	84.0	7.0	5.2	13.5	0.70
DDH71	11.0	2.0	0.5	218.0	0.06
DDH71	39.9	1.0	1.3	6.0	0.03
DDH71	45.5	1.1	0.4	22.8	0.60
DDH71	104.0	10.0	33.5	126.7	7.9
DDH72	26.0	11.7	3.8	14.1	1.3
DDH72	52.7	6.3	1.5	30.4	0.04
DDH73	62.5	3.5	0.5	15.6	0.60
DDH74	119.9	0.5	7.3	98.5	2.6
DDH76	61.3	0.7	4.0	11.1	0.50
DDH76	74.4	4.0	0.8	8.8	0.30
DDH76	84.8	1.2	1.4	10.9	2.0
DDH78	109.1	0.7	1.1	13.4	1.9
03HD01A	90.1	1.7	2.1	37.4	2.4

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		03HD03	55.0	2.4	2.5	25.6	2.3	
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	

Issued Capital 653.1m shares 86.6m options 120m perf shares Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.5	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.9	(1)
and	10.00	75.00	0.75	38	0.27	1.4	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.5	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.1	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	

riteria	JORC Code explanation	Commentary							
		and	0.70	60.30	0.8	25	0.21	1.2	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		and	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020:

2									
Hole_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
			101 -1			101 -1			
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	

Criteria	JORC Code explanation	Commentary									
		inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
		GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
		GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
		and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
		GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
		and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
		and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
		GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
		GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
		and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
		inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
		GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
		GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
		inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
		and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
		GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
		and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
		and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		GNRC056		56 1		138	0.08	4.1	0.01	0.07	
		GNRC057	3	37 12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062		17 3		7.9	2.7	5.0	0.24	0.17	
		GNRC063		19 1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064		22 1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	:	27 1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	3	33 6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068		9 69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc		9 27	7.9	16	7.0	11.2	0.59	0.16	
		and	!	51 1	1.0	40	0.93	1.9	0.08	0.12	
		and	ļ	59 1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	(66 2	1.6	1.2	0.02	1.7	0.01	0.00	
		and		72 4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	:	18 7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc		19 1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	!	53 10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	!	59 3	1.7	11	0.84	2.3	0.03	0.07	
		and	;	84 15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	:	84 4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	9	96 1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	4	41 1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	4	48 2	0.45	5.4	2.1	1.4	0.01	0.12	
		GNRC072	4	43 19	0.16	4.9	0.13	0.28	0.00	0.09	2
		GNDD073	N	ISI							
		GNDD074		41 2	1.2	20.5	0.04	1.4	0.00	0.02	
		and		47 2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075	3	31 18	0.78	1.6	0.07	0.83	0.01	0.22	2
		inc		37 2		1.6	0.08	2.2	0.01	0.32	
		and		46 2	1.8	2.4	0.08	1.9	0.00	0.07	
		GNRC076		35 5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc		35 1		18	0.00	53.3	0.00	0.02	1

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 923

Criteria	JORC Code explanation	Commentary									
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNDD096	NSI								
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

Criteria	JORC Code explanation	Commentary									
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
		GNDD100	NSI								
		GNDD101	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD105	NSI								
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNDD108	NSI								
		GNDD109	NSI								
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51	
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10	
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9	
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11	
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11	
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05	
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07	
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05	
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04	
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16	
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25	
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02	
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01	
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73	
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380

Criteria	JORC Code explanation	Commentary									
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
		GNDD143	NSI								
		GNDD145	NSI								
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 92

Criteria	JORC Code explanation	Commentary									
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD159	NSI								
		Holes for meta		-							
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		GMDD039	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		GMDD041	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GMDD043	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1
Data aggregation methods	 In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short length of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	(2) cut of (3) comb (4) comb NSI: no sig Weighted av to cut-off gra between san between san gold grade ed Metallurgica SGS Metallur metallurgical calculation g	ade of a 1.0 g/s nples above the nples above the quivalent: Au l I recoveries for gical Operation I sample from old recovery is	uivalent th 0.2 g/t th 1.0 g/t ection nt interce th Au equive cut-off ge cut-off gr JS\$ 1780 r Au, Ag ans in Lake 5 drill hole estimate	epts are realent and grade and grade. The condition of th	eported if 10 g/t if 10 g/t if 10.2 g/t e following \$\$24 /oz we been that is the front of the following data from silver at	to a gold and equival Au equival Au equival and Zn U estimated and a comborn the test 84% and	grade equivent allowing and meta signature from meta pination of a zinc at 795	valent (AuE ng for up to ng up to 6 I prices hav allurgical te gravity and nd for the 6. Accordii	dq). Result 2 2m of int m of interior been us est work co l flotation purposes ngly, the f	es are reported ernal dilution nal dilution ed to report completed by of a combined of the AuEq ormula used is
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Metallurgica metal equiva are reported of the Projec	llents calculati in the table a	d geologic on have a pove, thes	al and pe reasonal se metals	trograph ole poter are not	nic descrip ntial of evused in th	otions sugg entual eco	est all the e nomic reco	elements i very. Wh	ncluded in the
Relationship between mineralisation	ween reporting of Exploration Results.		ion is modera ormation in mo e exploration p	st cases t		-					s, there is ntersections at
widths and the drill hole angle is known its nature should be Apparent w	Apparent width cross faults and		er in the	case whe	re beddi	ng-paralle	el mineralis	sation may	intersect	ENE-striking	
	reported there should be a clear statement to this effect (eg 'down hole length true width not known').	Cross section di widths from inc	-		ided with	release	of signific	cant interse	ections to a	llow estin	nation of true
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative	maps and sec	tions are _l	provided	in the bo	ody of rep	ort.			

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration. CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation; Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill
		hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	- Comment on any site visits undertaken by the Competent Person and	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19
	the outcome of those visits.If no site visits have been undertaken indicate why this is the case.	February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological	- Confidence in (or conversely the uncertainty of) the geological	The interpretation is considered appropriate given the stage of the project and the nature of
interpretation	interpretation of the mineral deposit.	activities that have been conducted. The interpretation captures the essential geometry of the
	 Nature of the data used and of any assumptions made. 	mineralised structure and lithologies with drill data supporting the findings from the initial
	 The effect if any of alternative interpretations on Mineral Resource estimation. 	underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time
	- The factors affecting continuity both of grade and geology.	and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to
		account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to
		the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource
		blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for
		the application of these tonnage reduction factors was not outlined in the resource report. It is noted
		that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project
		was likely no longer a core asset for La Mancha at that time. Additionally under the original
		acquisition agreement La Mancha had to issue additional acquisition shares based on resource
		targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction
		factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. 	The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; - Metal prices: Au U\$\$550 Oz Ag U\$\$10 Oz - Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil - Operating cost: U\$\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute flotation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%.

Criteria	JORC Code explanation	Commentary
		 Knelson concentrate tests with flotation of tailings were also completed. Applying a joint process Knelson concentrator and flotation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional flotation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018. The sample is of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and flotation techniques to provide a series of gravity and flotation concentrates. Key results are: Combined gravity and flotation concentration process resulted in recoveries 85-94% for Au, 82-86% for silver and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recoveries to Zn. A simple gravity separation followed by a sulfide flotation process when re-combined produced a single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with a recovered weig
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and 	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available.
	 of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the 	The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
	 deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure
		of the bulk density.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling.
	 quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.
		The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.

Criteria	JORC Code explanation	Commentary					
		mineralisation (non-JORC Cod tonnage to the 25% for indicat	The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported.				
		measured reso of 145001 tonr grading 13.4 gr resources Toro Estimate) – See The 2003 Mine	The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancresources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource (Stimate) – See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Perview of the deposit and the current level of risk associated with the project to date.				се
			NI43-101 (non-JORC Code com				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299578	14.2			
		Indicated	145001	14.6			
		Inferred	976539	13.4			
		Historic 2006	Historic 2006 NI43-101 (non-JORC Code compliant)				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164294	12.5	52.1	2.5	
		Indicated	51022	12.4	36.2	2.6	
		Inferred	213952	11.7	46.6	2.3	

Criteria	JORC Code explanation	Commentary
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource estimate has not been audited.
		The earlier (1996 and 2000) Mineral Resource Estimates were audited and re-stated in a 2003 resource report. This independent report was done to NI-43-101 standard and the results of this report were released to the TSX. This report concluded that "Detailed resource calculations made by three different groups are seen to be realistic.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.
	such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability.
	 relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as reported.
		No production data is available for comparison